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Introduction
We invest millions of dollars and years of time to build it wrong, but can’t
we spare a dime or a minute to build it right?
Nowadays corporations are madly building data lakes, a by-product
of the Big Data mania. Then one day they wake up and find that they
can’t get anything meaningful out of their data lake. Or at least it
takes a monumental effort to get the smallest amount of useful
information out of their data lake.
They spend huge amounts of money and many man years of effort
and build something that is a white elephant.
One day the corporation wakes up to the fact that they have built a
“one way” data lake. Data goes into the data lake but nothing ever
comes out. When this happens, the data lake is no more useful than a
garbage dump.
This book is dedicated to corporations that want to build data lakes
so that they can get useful information out of their data lakes. There
is business value in the data lake, but only if you build it properly. If
you are going to build a data lake you may as well build it so that it
becomes an important corporate asset, not a liability.
The book examines why corporations have such a hard time getting
anything useful out of their data lakes. There are several answers to
this important question. One reason is that data is just packed into
the data lake in an indiscriminant fashion. Another answer is that
data is not integrated. A third reason is that data is stored in a textual
manner and you can’t easily do analysis on text.
This book suggests that a high level of organization of data in the
data lake is needed and that integration and “conditioning” of the
integrated data is needed in order to make the data a foundation for



analytical processing. The data lake can be turned into a positive
asset for the corporation, but only if there is care and forethought in
the shaping of the data lake.
The data lake needs to be divided into several sections, called data
ponds. There is the:

Raw data pond
Analog data pond
Application data pond
Textual data pond
Archival data pond.

After the data ponds are created, the ponds require conditioning in
order to make the data accessible and useful. For example, the analog
data pond needs to have data reduction and data compression
applied to it. The application data pond needs to have classical ETL
integration applied to it. The textual data pond needs to have textual
disambiguation applied to the text so that the text can be reduced to
a uniform database structure and so that the context of the text can
be identified.
Once the data ponds have had conditioning algorithms applied to
their data, the data ponds then serve as a basis for analytical
processing. Once the data in the data lake has been divided into
ponds and the ponds have their data conditioned, then the ponds
serve as an asset for the corporation, not a liability. In addition the
data in the ponds is moved to the archival data pond when the useful
life of the data in the data pond is over.
This book is for managers, students, system developers, architects,
programmers, and end users. This book is designed to be a guideline
to the organization that wishes to build data lakes that are an asset,
not a liability.



Chapter 1 
Data Lakes

First came the punch card. Then magnetic tapes. Then disk storage
and database management systems, followed by fourth generation
languages (4GLs), “metadata” and floppy disks and mobile
computing. Advances coming faster than we could memorize their
new names. Soon personal computers and spreadsheets became as
ubiquitous as suits and ties. And that was just the beginning.
In a rapid few decades, the corporation went from no automation to
hyper automation. Throughout this progression one of the limiting
factors was storage. Storage was always either too expensive or too
limited in its capacity to hold large volumes of data. The bottleneck
of storage limits had a profound effect on the types of systems that
could be built and hampered the performance of systems that were
built.

ENTER BIG DATA

Then one day Big Data changed the world. Big Data technology was
best typified by the Hadoop Distributed File System (HDFS). This
open-source software framework was designed from the ground up
to store and process massive datasets distributed among many
different computer clusters. With Big Data, storage is effectively
unlimited in terms of cost and technical constraints. Most
importantly, with Big Data whole new worlds of processing and
opportunity opened up.
In short order, Big Data redefined our very conception of data. The
sheer volume of data that could be stored and analyzed with Big Data
systems revolutionized not just the industry, but the world.
Megabytes, gigabytes, terabytes... the old data measures were thrown



out the window in this new world where storage volume was
effectively unlimited. Fig 1.1 depicts the advent of Big Data.

Fig	1.1	Creating	unlimited	opportunities	by	leveraging	Big	Data

ENTER THE DATA LAKE

As Big Data blossomed, organizations began to store the endless
stream of data being collected in structures called “data lakes.”
While collecting the data was a piece of cake, plucking something
useful from this sea of knowledge was the real challenge. Some
organizations turned to data scientists to make sense out of their
data lakes. Despite the costs sunk into research, Big Data was just as
brand new and unexplored for the scientists as the organizations.
Analytic breakthroughs were rare, expensive to produce and fraught
with false positives and other errors. Fig 1.2 shows that Big Data
leads to massive data lakes to sift through.



Fig	1.2	Placing	Big	Data	in	the	data	lake

Fig 1.3 shows the frustration by the business community that grew as
the volume, and therefore value, of data in the data lake continued to
grow, while they could do little of value with their treasure.



Fig	1.3	Waking	up	and	finding	that	we	can’t	find	anything	in	the	data	lake

“ONE WAY” DATA LAKE

There were many reasons for business users to be frustrated with the
information pooling in their data lakes. The core issue was that the
larger the information lake grew, the more difficult analyzing the
data became. A data lake of any significant size was often dubbed a
“one way lake,” since data is eternally pouring in, but data and/or any
analysis is never taken out, or even accessed once the data is placed
inside the data lake. Fig 1.4 depicts the “one way” data lake.



Fig	1.4	Entering	data	into	the	“one	way”	data	lake,	but	nothing	comes	out

It was an expensive and frustrating Catch-22. The larger and more
potentially insightful a data lake grew, the more useless it became to
the organization. If no one is using data in the data lake, then the
lake serves no purpose to the organization. Yet the organization was
paying a lot of money on storage and the specialized staff to extract
useful information out of the data lake.
The question then arose – why is the data lake one way and what can
be done about it? There is great potential in Big Data and data lakes,
but no one seems to be getting their money’s worth out of their
investment. There are many reasons why the data lake turns into a
“one way” data lake. But those issues trace their roots to how data
was placed into the data lake in the first place: the intent was never to
organize the data for future usage. Instead the data lake became a
place just to “dump” data. So much effort was spent on gathering
data from every possible source that few engineers or companies



gave much thought to organizing the data for future usage. Fig 1.5
shows that with the “one way” data lake, the lake becomes little more
than a large garbage dump for data.

Fig	1.5	Turning	the	data	lake	into	a	garbage	dump

Does the data lake have to become a garbage dump? Isn’t there
something that can be done in order to make the data lake a
productive and useful place? Were the promises of Big Data just a
bunch of hype by the vendor? Indeed, the data lake has the potential



to become a quite useful foundation for analytical processing.
However, as long as people simply dump data into the data lake with
little or no thought to the future usage of the data, then the data lake
is destined to remain a garbage dump.
What are some of the issues with the data lake when data is merely
dumped inside? Let’s unpack the core problems one by one.
One issue is that useful data becomes hidden from the analyst
because it is buried behind mountains of other information that are
not relevant. There is nothing very remarkable about much of the
data that is useful to companies. And given the sheer volume of data
found in the data lake, the blandness of useful data makes it that
much more difficult to find. Put another way, useful data just doesn’t
stand out in the mountains of data that accumulate in the data lake.
A second and related issue is that the metadata describing the data
points in the data lake are not captured or stored in an accessible
location. Only the raw data is stored in the data lake. This makes
analysis of data a really dicey issue because the analyst never knows
the meaning or source of the data that has found its way into the data
lake. In order to perform useful analysis, the organization needs
accurate and readily accessible metadata that puts the data found in
the data lake in context.
A third shortcoming of the one-way data lake is that data
relationships are lost (or are never even recognized). The pool is so
large that important data relationships are not carried forward into
the data lake. It’s considered too cumbersome to carry data
relationships into the data lake.
And this list is just the beginning of the shortcomings of data in a
“one way” data lake. In fact, there are many more technical obstacles
in the way of effectively utilizing a data lake. Fig 1.6 shows some of
the limitations of data in the data lake.



Fig	1.6	Traditionally	analyzing	data	in	the	data	lake	becomes	impossible

IN SUMMARY

Because the information inside the data lake is not designed for



future access and analysis, the organization soon discovers the data
lake will not support their business, no matter how large it is.
Organizations have long known that in order to support the
business, data must be organized in a rational, easy to use, and easy
to understand manner. Due to data being dumped into the lake with
no thought for future usage, the data lake is consequently not useful
to the business.
When the data lake is transformed into a “one way” data lake, the
only benefit to the business of the data lake is as a cheap facility for
the storage of useless data. The data lake as a cheap form of storage
hardly justifies the expense and investment organizations have
made.
So let’s take a look at solutions for this quandary.



Chapter 2 
Transforming the Data Lake

The data lake has great potential. The data lake can be used to
conduct analytical processing that has never before been done. From
governments to small businesses, the data lake can be used to
identify, analyze and even predict important patterns which
heretofore have gone unnoticed.
What needs to be done to turn the data lake into an information gold
mine? What exactly does the organization need to think about as it
creates its data lake? What are the things that can be done to data
that will prepare for future usage and analysis?
With care and planning, the data lake can be turned into an
information gold mine. What are the ingredients that are needed to
turn the data lake into a bottomless well of actionable insights?
There are four basic ingredients that are needed: metadata,
integration mapping, context, and metaprocess.

METADATA

Metadata is the description of the data in the data lake itself (as
opposed to the raw data). Metadata is the basic structural
information that every collection of data has associated with it. For
example, if tracking visits, clicks and engagement to a website,
metadata would include the IP address/geographic location of the
visiting computer. Typical forms of metadata include descriptions of
the record, the attributes, the keys, the indexes and the relationships
among the different attributes of data. There are however many
additional forms of metadata.
Metadata is used by the analyst to decipher the raw data found in the
data lake. Or in other words, metadata is the basic roadmap of the



data that resides in the data lake.
When only raw data is stored in the data lake, the analyst that needs
to use that data is crippled. Imagine trying to search Wikipedia if
none of the articles had titles. Raw data by itself just isn’t very useful.
Now when raw data is properly tagged with metadata and stored in
the data lake together, you now have an incredibly useful service.

INTEGRATION MAPPING

The integration map describes how data from one application relates
to data from another application and how that data can be
meaningfully combined. As important as metadata is, it is not the
only basic infrastructure ingredient needed in the data lake.
Consider that most of the data lake’s input is generated by an
application, in one form or the other. What happens when you put
data from different applications in the data lake? You create
unintegrated “silos” of data in the data lake.
Each application, usually written in a different coding language,
sends its input to a separate silo, which cannot communicate or “talk
to” the other silos. While the information is all stored in the same
data lake, each silo is unable to integrate its data with the others,
even if properly tagged with metadata.
In order to make sense of the data in the data lake, it is necessary to
create an “integration map.” The integration map is a detailed
specification that shows how the lake’s data can be integrated. The
integration map is the best method to overcome the isolation of data
in the silos.
Fig 2.1 shows that when unintegrated application data is placed in
the data lake, silos of data are created. These silos make the reading
and interpretation of data a very difficult thing to do.



Fig	2.1	Creating	silos	leads	to	unintegrated	data,	hindering	communication

CONTEXT

Another complicating factor in the data lake is textual data that has
been placed there without context of the text being identified.
Suppose the text “court” appears. Does court refer to a tennis court?
To a legal proceeding? To the activities of a young man as he tries to
lure a young lady as his mate? Does court refer to the people
surrounding royalty? When you look at the word “court” by itself, it
might mean any of these things or more.
Text without context is meaningless data. In fact, in some cases it is



dangerous to store text without an understanding of its context. If
you are going to put text in the data lake, then you must also insert
context as well, or at least a way to find that context. Fig 2.2 shows
that context for text is an essential ingredient for data found in the
data lake.

Fig	2.2	Lacking	context	of	textual	data

METAPROCESS

Metaprocess information is information about how the data was
processed or how the information in the data lake will be processed.
When was the data generated? Where was the data generated? How
much data was generated? Who generated the data? How was the
data selected to be placed in the data lake? Once inside the data lake,



was the data further processed? All of these forms of metaprocessing
are useful to the analyst as they go about extracting and analyzing
the lake’s data.
The most important point is that these features need to be included
at the outset. Usually, after the raw data has been loaded into the
data lake, it is too late to go back and include these essential
ingredients.
However, once the ingredients have been added, the data lake is a
potential information gold mine. Fig 2.3 depicts the broad strokes
required to turn the data lake into a powerful and useful corporate
resource.



Figure	2.3	Going	from	a	garbage	dump	to	an	information	gold	mine

Another important effect of turning the data lake into a useful
corporate resource is that an entirely different and expanded
community of users can make use of the tool.
Consider the transformation of a data lake into a useful corporate
resource. Fig 2.4 shows the data lake in an untransformed state and
the data lake in a transformed state.



Fig	2.4	Going	from	an	untransformed	state	into	a	transformed	state

DATA SCIENTIST

When the data lake is in its raw state only a handful of specialists can
make sense of the data in the data lake. Typically these people are
called data scientists. Data scientists are:

Hard to find
Expensive to hire
Hard to get their time when they are hired.

There is nothing wrong with data scientists as a group of people. But
the difficulty in even finding them, the cost of hiring them, and the
difficulty in getting their time even when they are found and hired is
legendary. No matter how well organized, when the data lake can be
operated only by a few people whose cost is high and time is
precious, the data lake just has limited corporate value.



GENERAL USABILITY

Now consider what happens when the data lake is fully integrated
and the data is transformed into a state of general usability.
Fig 2.5 shows the difference between a data lake that is accessible
only to a few data scientists and one after transformation that’s
accessible to a large population of business users.

Fig	2.5	Transforming	data	increases	user	accessibility

After transformation, the data lake is useful to accountants,
managers, systems analysts, the end user, the finance team, sales



staff, marketing and so forth. By integrating and conditioning the
data, the audience served by the data lake expands greatly. And in
doing so, the lake’s value to the corporation expands greatly.

IN SUMMARY

The data lake has great potential. But when people merely dump data
inside with no thought as to how the data will be used, there is the
very real danger that the data lake will turn into a garbage dump.
With four basic ingredients, the data lake can be turned into an
information gold mine:

Metadata. Metadata is used by the analyst to decipher the raw
data found in the data lake. Metadata is the basic roadmap of
data that resides in the data lake.
Integration mapping. The integration map is a detailed
specification that shows how the data in the data lake can be
integrated. The integration map shows how the isolation of data
in the silos can be overcome.
Context. If you are going to put text in the data lake, then you
must also insert context as well, or at least a way to find that
context.
Metaprocess. Metaprocess tags are information about the
processing of data in the data lake.



Chapter 3 
Inside the Data Lake

In order to better understand how the data lake can be prepared for
future access and analysis, it is necessary to take a look at what lies
inside the data lake.
While it is true that any kind of data can be found inside the data
lake, it is nevertheless possible to categorize the data into three
categories:

Analog data
Application data
Textual data.

Fig 3.1 shows that most data inside the data lake fits into one of three
categories.





Fig	3.1	Categorizing	data	lake	data	into	three	types

ANALOG DATA

The first type of data found in the data lake is analog data. Analog
data is typically generated by a machine or some other automated
device, even if not connected to the internet. These measuring tools
include diagnostic programs logging performance on everything
from nuclear reactors to the CPU usage of your mobile phone.
In general, analog data is very voluminous and very repetitive. Most
analog data consists of a long list of numbers that have been
generated. Most records created by an analog device are
measurements and most of the time those measurements only vary
slightly from all other measurements. Typically, these small outliers
are of the most interest.
Analog data usually are a simple measurement of some physical
value (heat, weight, chemical composition, size, etc.). When a
measurement seems out of line, it is an indication to look elsewhere
for the cause of the measurement. For example, the odd
measurement may have been caused by the fact that a machine has
lost its calibration. Or a part needs an adjustment, and so forth. The
analog data is merely a signal to the analyst to look elsewhere as to
the cause of the variation in measurement.
Which is why the metaprocess information associated with analog
data is often times more important than the analog data itself.
Metaprocess details typically include such information as time of
measurement, location of measurement, speed of measurement, and
so forth.
Typically, analog information is triggered by or associated with some
trigger, such as a manufacturing event. A part is created. A shipment
has been sent. A box has been moved. These are all common events
causing the creation of an analog record. The analog measurement is
almost always made mechanically, without any user input or extra



processing. Fig 3.2 shows an event triggering the creation of an
analog measurement.

Fig	3.2	Triggering	analog	measurements	through	events

The data points accompanying the raw data captured in the analog
measurement process is called “metaprocess” data. While there are
different kinds of metaprocess models suited to different objectives,
this raw output is the most relevant to data lakes. The metaprocess



information provides a different perspective of the analog data than
just looking at the raw data itself. Fig 3.3 depicts some typical
metaprocess details.

Fig	3.3	Providing	a	different	perspective	of	the	analog	data	than	just	looking	at	the	raw	data	itself

Often times the analog measurements are stored in log tapes or
journal tapes. A log tape is a sequential measurement of one or more
variables detected during the event(s) that creates an analog



measurement. A log tape is very detailed. Numbers are generated in
very small intervals.
The format of the log tape is typically complex. Often times system
utilities are used to read and interpret the log tape because of their
complexity. In most cases, the log tape captures all the events that
occur, not just the events that are of interest or events that are an
exception. As a consequence, it’s normal for a log tape to contain
much extraneous information. Fig 3.4 shows the analog data found
on a normal log tape.

Fig	3.4	Storing	analog	data	in	log	tapes	or	journals



APPLICATION DATA

The second general category of data found in data lakes is
application data. Application data is generated by the execution of an
application or transaction, and sent to the data lake. As important as
transaction data is, it is not the only kind of data found in the
application component of the data lake.
Typical types of application data found in the data lake include sales
data, payment data, banking checking data, manufacturing process
control data, shipment data, contract completion data, inventory
management data, billing data, bill payment data, and so forth.
When any business relevant event occurs, the event is measured by
an application and the data is created.
The physical manifestation of application data in the data lake can
take many forms. However, the most typical form is recording
activity in an application. The records may or may not have been
shaped by a database management system (DBMS) application. It is
typical of the application records to have a common and repeating
uniform structure. Fig 3.5 shows that structure.

Fig	3.5	Repeating	the	same	structure

The common, uniform structure of the application data is usually in
the form of a record, which is more than an analog data point. The
record may have attributes. One or more of those attributes may be
designated as a key. One or more of the attributes can have an
independent index. Fig 3.6 shows the key and record structure that is
typical of application data in the data lake.



Fig	3.6	Typical	key	and	record	structure	in	the	data	lake

It is noteworthy that the structure of application data may or may not
be rigorously tied to the DBMS that the data once was housed in.

TEXTUAL DATA

The third general type of data found in the data lake is textual data.
The textual data is usually associated with an application. However,
the textual data takes a very different form than application data.
Whereas application data is shaped into uniform records, data found
in a textual format is decidedly not shaped into any uniform form.
Textual data is called “unstructured data” because the text can take
any form. For example, when a person is speaking, they can say
anything in any fashion that they like. Usually the sounds make



sense, but many variables can strip away the structure. They could
speak in riddles and parables. They might use a different language.
Their speech may contain slang, vulgarities, be in a formal style or
might even be an inside joke. Naturally, such text is extremely
content dependent and not easily searched or processed by
automated means.
Typical text found in corporations include call center conversations,
corporate contracts, email, insurance claims, sales pitches, court
orders, jokes, tweets, invitations and so forth. There is no limit as to
what kind of text and how much text can be stored in a data lake.
However, in order for text to be used analytically it must be
transformed. As long as text is in its original form, only the most
superficial analysis can be done against the text. In order for text to
be subjected to useful analytical processing, unstructured text must
pass through a process known as textual disambiguation.
Note that analog data and application data rarely have to pass
through a similar process. Because of the uniformity with which
analog data and application data are captured, those kinds of data
points are expected to be analyzed by a computer. But if there is to be
exhaustive analysis of text, it must be passed from its unstructured
form of data through textual disambiguation at which point it passes
into a state and form that can be analyzed by the computer.
There are two principal activities that are accomplished by textual
disambiguation:

Text goes from an unstructured state to a structured uniform
state that can be analyzed by the computer, and
Text has context recognized and associated with the text itself.

While these are the two primary functions of textual disambiguation,
there are other useful functions accomplished by textual
disambiguation. The most complex of these disambiguation activities
is the identification of the context of text and the association of text
with that context, as seen in Fig 3.7.



Fig	3.7	Identifying	the	context	of	text

ANOTHER PERSPECTIVE

The three major categories of data found in the data lake then are
analog data, application data and textual data. But there is another
important classification of data in the data lake between repetitive
and non-repetitive data. In general, analog and application data are
repetitive, whereas textual data is non repetitive. Fig 3.8 shows data
in the data lake divided into classifications of repetitive data and
non-repetitive data.



Fig	3.8	Repetitive	data	is	data	where	the	same	unit	of	data	occurs	over	and	over.	Non-repetitive	data
is	data	where	the	same	unit	of	data	does	not	occur	repeatedly,	if	at	all.

While this might seem minor at first glance, there is great
significance to the division of data into these two classifications.
In later chapters, we will explore the differences between repetitive
and non-repetitive data in terms of business value and the
significance of this division. Generally, there is great business value
in non-repetitive data while significantly less business value is found
in repetitive data. Because of the stark difference in business value,
they form what is called the “great divide” between the two types of
data, as seen in Fig 3.9.



Fig	3.9	The	“great	divide”	between	repetitive	and	non-repetitive	data



IN SUMMARY

There are many ways of organizing a data lake. One of those ways is
to categorize data into one of three categories:

Analog data
Application data
Textual data.

Another important method of categorizing data is into repetitive and
non-repetitive data. The difference between repetitive data and non-
repetitive data forms what is termed the “great divide.”



Chapter 4  
Data Ponds

In order to organize the different types of data into a structure that
can be analyzed, it is necessary to create a high-level structure of data
within the data lake. As data enters the lake it first enters the raw
data pond. The purpose of the raw data pond is to serve as a holding
cell. There is little or no analysis or other organized activity of the
data while in the raw data pond.
Once it is time for analysis, the information in the raw data pond is
sent to one of three different ponds based on the kind of data
entailed. For example, analog, application and textual data all require
a unique data pond.
While it is important to separate the three types of data, once inside
the pond considerable processing takes place. It’s noteworthy that
very different kinds of data processing or conditioning of the data
occur inside the data pond. After the conditioning in finished, the
data in the pond is fit for analysis.
After the data has outlived its useful life in the data pond, it’s moved
from the analog, application, or textual pond into an archival data
pond. This high-level flow of data from the raw data pond through
the analog pond, the application pond, or the textual pond is seen in
Fig 4.1.





Fig	4.1	Understanding	the	data	lifecycle	across	the	different	types	of	ponds

CONDITIONING DATA

As data enters the various source ponds, the raw data goes through a
conditioning process to prepare the data for analytical processing.
Stated differently, if raw data does not go through the conditioning
process, it has a hard time supporting the business analysis, which in
turn creates business value. This is because the information is not in
a format which is easy, or sometimes even possible, to study. It is
absolutely mandatory that raw data be conditioned if it is to be fit for
supporting analytical processing.
But conditioning for each type of pond is very different.

RAW DATA POND

The genesis of data is the raw data pond. The raw data pond is what
many organizations initially call the data lake. Too often, they’ll
simply throw data into the lake and then wonder why they can’t do
any meaningful analytic processing against the data. In fairness,
analytical processing can be done against raw data in the data lake. It
just requires a data scientist to do the analysis. But much more lucid
and efficient data analysis can be done against data after it has been
conditioned. Almost as important, once the data has been
conditioned, it can then be analyzed by the ordinary business user.
An interesting architectural question is: once raw data flows from the
raw data pond into the data pond, should the raw data remain in the
raw data pond? The answer is no. Once raw data passes from the raw
data pond to the analog data pond, the application data pond, or the
textual data pond, it is best to remove the source data from the raw
data pond. The raw data has already served its purpose and it would
be extremely rare for analytical processing to ever be performed in
the raw data pond. The raw data pond then becomes a “holding cell”



for a jumble of data, as seen in Fig 4.2.

Fig	4.2	Becoming	a	“holding	cell”	for	a	jumble	of	data

The data in the raw data pond should be passed to the supporting
data ponds as quickly as possible. One useful measure of quality for
the raw data pond is how small it is and how quickly data passes out
of the pond.

ANALOG DATA POND



The analog data pond is a place where, naturally enough, analog data
is stored. The conditioning process for analog data primarily consists
of data reduction – of reducing the volume of data in the analog pond
to a workable, manageable, meaningful volume of data and
restructuring the data in the pond.

APPLICATION DATA POND

The application data pond is populated with information that comes
from executing one or more applications. This application data is
probably the “cleanest” in the data lake because it has been
generated by an application. All the data in the application pond is
uniformly structured and contains values that are relevant to the
execution of some business activity. But the data in the application
pond is notoriously unintegrated. If, by some chance, all the
information in this pond comes from a single application, the data in
this pond may actually be integrated. However, for large corporations
(and it is mostly large corporations who have data lakes) there is a
good chance that data in this pond comes from different
applications. It’s this multi-application origin of data that gives the
analyst a hard time.

TEXTUAL DATA POND

The textual data pond is where unstructured textual data is placed.
Text here can come from anywhere. Text in this pond is notoriously
difficult to analyze in a profound fashion. Text can have a superficial
analysis done with no transformation, but in order to do a deep
analysis of the data it is necessary to disambiguate the text.
The disambiguation of text has two important effects:

Text is restructured into a uniform, database format, and
Text has context identified and attached to the text itself.



DATA PASSING DIRECTLY INTO THE DATA PONDS

It is worthy of note that data does not have to pass through the raw
data pond, although it almost always does. If the developer is
sophisticated, it is possible to send the data directly into the analog,
application or the textual pond of data. However most data passes
through the raw data pond simply because that is the way most
organizations did it in the beginning. Fig 4.3 shows that raw data can
pass directly into the analog, application or textual data pond.

Fig	4.3	Sending	raw	data	into	the	different	data	ponds

In the final stages of the life cycle of data, data passes from the
analog, application or textual data pond into the archival pond.

ARCHIVAL DATA POND



Fig 4.4 shows the passage of data from the various data ponds into
the archival data pond.

Fig	4.4	Storing	data	in	the	archival	data	pond	in	optional

The purpose of the archival data pond is to hold data that is not
actively needed for analysis but might be needed at some future
point in time for analysis.

IN SUMMARY



The data lake that can support analytical processing is divided into
several data ponds:

The raw data pond is the place where data first enters the data
lake. The raw data pond serves as a holding cell for data.
The analog data pond is the place where analog data is
channeled.
The application data pond is the place where application data is
channeled.
The textual data pond is the place where textual data is
gathered.

Upon entering the different data ponds, raw data passes through a
conditioning process. Finally, when data has reached the end of its
useful life, data passes into an archival data pond.



Chapter 5 
Generic Structure of the Data Pond

Each of the data ponds (other than the raw data pond) has some
common components:

Pond descriptor. The pond descriptor contains a description of
the external contents and manifestation of the pond, and where
the data in the pond originated from.
Pond target. The pond target is a description of the relationship
between the business of the corporation and the data inside the
pond.
Pond data. The data in the pond is merely the physical data that
resides inside the pond.
Pond metadata. The metadata describes the physical
characteristics of the data contained in the data pond.
Pond metaprocess. Metaprocess information is information
about the transformation / conditioning of the data inside the
data pond. In order to be useful, data in the pond must undergo
a transformation / conditioning process.
Pond transformation criteria. Pond transformation criteria are
documentation of how the transformation / conditioning of data
inside the pond should occur.

POND DESCRIPTOR

The pond descriptor has information such as:
Frequency of update or refreshment. The update frequency or
refreshment refers to the cycle with which data is sent to the
data pond and/or the frequency or refreshment cycle of data
outside the pond. This can be a regularly scheduled movement
of data or update / refreshment can be on an as needed basis.



Source description. The source description describes the
lineage of the data in the data pond. In many cases, the lineage
of data will pass through more than one source. This lineage
information is useful to the analyst in determining the fitness
of data in the data pond for analysis.
Volume of data. The volume of data is a general description of
how much data is in the data pond. Data is measured both in
terms of number of records and in number of bytes. The
volume of data greatly influences the type and depth of analysis
that can be done.
Selection criteria. The selection criteria are a description of the
criteria that were used to select the data for inclusion in the
data pond. The selection criteria of data are important to the
analyst in determining what data is in the pond and why it is
there.
Summarization criteria. Most of the time, data is summarized
or otherwise processed as it passes into the data pond. The
summarization is a description of the algorithms employed. In
some cases, data is transformed in a different model than
summarization. This is a description of the algorithmic
processing used in the shaping of the data in the data pond.
The summarization criteria are useful to the analyst in
determining how to do analysis.
Organization criteria. Once the data is placed in the data pond,
it is usually organized along the lines of the target of the pond.
The target of the pond is similar to the data model of the
business. The organization of data can be rigorous or casual,
but in any case there is a description of exactly how the pond is
organized. The description of the data organization is useful to
the business analyst trying to make sense of the data pond.
Data relationships. There normally are many data relationships
among the data found in the pond. This is a description of those
relationships. The data relationships are useful to the business
analyst when it comes time to do business analysis.



POND TARGET

The pond target is the basic model that is used to shape the data in
the data pond. The pond target can be as formal as a data model or
can be as informal as a general description of the data found in the
data pond. Typical pond target elements include such things as
customer profile, sales record, shipment record, patient record, part
number, inventory, SKU, telephone call record, click stream activity,
delivery information, insurance claim, professor name, class name,
class schedule, flight schedule, flight manifest, passenger record,
reservation record, and so forth.
The pond target is the means by which a business relationship is
made to the data in the data pond. The pond target is invaluable to
the business analyst in planning how to conduct an analysis. There
will then be, of necessity, a business relationship between the
elements found in the target and the business itself.

POND DATA

The pond data is the physical manifestation of the data itself as it
resides in the pond. The data can be organized in many ways
depending on the storage mechanism for the data pond. In the world
of Big Data, it is customary for the information to be stored in a
“schema on read” manner. In this system, the data is initially stored
in a block of data. Then when a query is made against the data, the
system goes and reads the block of data and determines the schema
inside the block.
By organizing data in this manner, very large amounts of data can be
stored efficiently. However, by storing the data in a “schema on read”
manner, the retrieval and analysis of the data can cause significant
overhead for the system to bear. Every time data is accessed, all the
data in the pond must be accessed in a “schema on read”
organization of data.



POND METADATA

An important component of the data pond is the metadata that
describes the physical characteristics of the data residing in the
pond. The metadata is dependent on the data that exists outside the
pond and the physical organization of the pond itself. If the data is
stored in a standard DBMS outside the pond, many (or all) of those
characteristics will be carried inside. In this case, the analyst can
expect to find the same records, attributes, keys, and indexes.
But if the data is stored in document form outside the data pond,
then the analyst can expect to find the data organized in a document
by document organization. Even in the case of data stored in a
“schema on read” system, metadata is still needed. However the data
is physically organized inside the pond, it will be described by
metadata. Without the metadata descriptions, the analyst would have
a hard time figuring how to read and analyze the data pond. Fig 5.1
shows that metadata about the data in the data pond is contained
inside the data pond itself.



Fig	5.1	Storing	the	metadata	about	the	data	in	the	data	pond

POND METAPROCESS

The metaprocess description of the transformation that takes place
inside the data pond is found in the pond itself. Data enters the data
pond in a raw state. Data is then “conditioned” or transformed into a
form and structure that makes the data useful and intelligible to the
analyst.
It is noteworthy that the conditioning process for each data pond is



quite different than the conditioning process for other data ponds.
The analog pond has its conditioning process which is quite different
than the conditioning process for the application data pond or the
textual data pond.
Metaprocess information may describe processing that has occurred
outside the data pond as well. On occasion, significant business
processing has occurred long before the data arrives at the data
pond. It is entirely possible that metaprocess information can be
gathered and stored when processing data. The metaprocess
information describes the conditioning process that is necessary for
each data pond, as seen in Fig 5.2.



Fig	5.2	Performing	the	conditioning	processing	for	each	data	pond

POND TRANSFORMATION CRITERIA

The transformation criteria are a description of the criteria used in
the transformation process for the conditioning of data within the



data pond. Each of the data ponds has their own unique
transformation criteria. The analog data pond may have a statement
of the threshold for measurements. There may be a criterion that
says: “If the length is greater than 45 cm then capture the record, else
do not capture the record.” Or there may be criterion that says:
“Catch all measurements of a certain machine for the month of May.”
In the application data pond, there might be criteria that looks like:
“If gender = 0 then convert gender to female. If gender = 1 then
convert gender to male. If gender = x then convert gender to female.
If gender = y then convert gender to male, and so forth.” Or there
might be criteria that says: “If measurement is made in inches, then
convert to centimeters.”
In the textual data pond, there might be transformation criteria such
as: “If word = Honda then add car to classification. If word = Porsche
then add car to classification. If word = Ford then add car to
classification. If word = Volkswagen, then add car to classification.”
Or there might be criterion that says: “If word = elm then type = tree.
If word = oleander, then type = bush.”
The transformation criteria is where the analyst goes to determine
exactly how transformations have been accomplished. Fig 5.3 depicts
the transformation criteria for each data pond.



Fig	5.3	Determining	the	transformation	criteria	for	each	data	pond

IN SUMMARY

Each data pond contains the following types of data:
Pond descriptor
Pond target
Pond data
Pond metadata
Pond metaprocess
Pond transformation criteria



Chapter 6 
Analog Data Pond

The analog data pond is the place where data that begins life as a
mechanically generated measurement of data resides. There are
many sources for analog data – electronic eyes, manufacturing
control machines, log or journal tapes, periodic metering
measurements and so forth.
Analog data is often referred to as data measured by the “inch” or by
the “millisecond.” Inches and milliseconds refers to the frequency of
measurement. Some products are laid out linearly and a snapshot is
taken every n inches. Or a product is produced and is measured every
millisecond. It does not take a fertile imagination to see that many,
many irrelevant data points can result from a mechanical recording
of measurements.

ANALOG DATA ISSUES

There are two generic issues with the data in the analog data pond.
The first is the sheer volume of data. It is normal for there to be a
massive amount of data that is generated by analog processing. A
machine just sits there and takes a snapshot every millisecond. It is
also normal for 99.9% of the data to be normal and of little business
value. The same (or nearly same) value is repeated over and over. In a
sense, the interesting data “hides” behind the tremendous volume of
information generated.
A second issue is that much of the important data associated with the
generation of the analog data is lost. Analog analysts have the habit
of collecting only the analog data and not the descriptor data that is



associated with the analog data. Unfortunately, the descriptor data is
often as valuable (or even more valuable) than the actual analog data.
The challenge the analyst has in dealing with analog data is in
preparing the data for analysis by streamlining and outlining the
important analog data. This streamlining and outlining is
accomplished in the transformation / conditioning process that
occurs inside the analog data pond.

DATA DESCRIPTOR

The details surrounding the information in the analog data pond is
very important. Some of the surrounding data includes:

The selection criteria for the data that finds its way into the
analog data pond
The originating source of the analog data
The frequency with which analog data is moved into the analog
data pond
The volume of analog data that is moved into the analog data
pond
The date and time that the movement of analog occurs.

Fig 6.1 depicts the analog data pond.



Fig	6.1	Storing	data	in	the	analog	data	pond

CAPTURING RAW DATA/TRANSFORMING RAW DATA



There are two basic steps that occur as analog data is moved into the
analog data pond. The first step is capturing and moving the analog
data into the data pond. The second step is the transformation /
conditioning of the analog data in the analog data pond into a form
and structure that is easily analyzed by the end user.
Note that the activity of transformation of the analog data occurs
entirely within the confines of the analog data pond itself.
Fig 6.2 shows the capture and transformation activities.

Fig	6.2	Capturing	and	transforming	activities	in	the	analog	data	pond

TRANSFORMING/CONDITIONING RAW ANALOG DATA

The most interesting aspect of the analog data pond is conditioning



the raw analog data into a form that is useful for analysis. The
process of conditioning can be called a transformation or a
conversion.
In an earlier day and age, the process of conversion was called data
reduction and/or data compression. The purpose of data reduction
was to significantly reduce the amount of storage and the number of
records that was required. And significantly reducing the amount of
storage required for data reduces the amount of work required by the
system to do analytical processing of the data.
The data reduction found in the analog data pond is entirely up to
the analyst managing the data. The type and amount of data
reduction will vary from one set to another.
Some of the techniques of data reduction that can be employed are:

Deduplication. Deduplication entails the removal of masses of
redundant data.
Excision. Data excision calls for the removal of unneeded data
and data that is unlikely to ever be needed for analysis.
Compression. Data compression allows data to be packed very
tightly. The problem with compression arises when compressed
data must be altered. It is difficult to alter highly compressed
data without incurring a high overhead.
Smoothing. Smoothing of data is the practice of removing or
editing outliers.
Interpolation. Interpolation of data is the practice of inferring
values of data based on the values near to the value being
created. The interpolated value is the “likely” value, had a value
been found.
Sampling. The practice of sampling data is the practice of
selecting a small subset of data that is representative of a larger
set of data. Sampling is good for analytical processing but
cannot be used for detailed update processing.
Rounding. Rounding is the processing of removing and
rounding insignificant digits from a data set.
Encoding. Encoding is the practice of representing long strings



of data with shorter strings of data.
Tokenization. Tokenization is a form of encoding. Tokenization
can be used effectively when there is a high degree of repetition
in the data being stored.
Threshholding. Threshholding is a form of excision. In
threshholding only values above (or below) the threshold are
stored. Everything within the boundaries of the threshold are
ignored.
Clustering. Clustering of data is the practice of grouping similar
and exact values of data. Clustering is a form of data
deduplication.

And there are many other forms of data reduction.
One or more of these techniques can be used for any given set of
analog data inside the analog data pond. Fig 6.3 shows that a
fundamental transformation of data occurs from the time the data
enters the analog data pond to the time that data is fit for analysis.



Fig	6.3	Making	the	data	useful	for	analysis	in	the	data	pond

Some of the common forms of data reduction inside the analog data
pond will be discussed in the following sections.

DATA EXCISION

Perhaps the most common and useful form of data reduction is data
excision. In data excision, data that is not needed is simply removed.
So how does the analyst tell that data is not needed? There are lots of
ways. One of these is rounding. Suppose a measurement is made
saying that a wheel is 16.577638892 cm in diameter. In practice, the



only digits that are significant are the first two following the decimal
point. As a consequence, rounding up to the first two digits makes
sense. The number 16.577638892 is rounded up to 16.58, thereby
saving significant space.
Another form of excision is that of threshholding. Suppose a
manufacturing process is being tracked. The output is measured by
an electronic eye. As long as the part is no longer than 1.257 cm and
is no shorter than 1.250 cm, then the part is in compliance. The
electronic eye reads the following parts as they come off the
assembly line:
1.256937
1.251004
1.249887
1.254887
1.261095
1.255087
1.252090
1.254981

Using the boundaries of threshholding, the system would record
only the data that was not in the boundaries of tolerance. In this case,
the system would record the values 1.249887 and 1.261095. The other
values are in the threshold of tolerance found by the system. Fig 6.4
shows that excision of data is a useful tool for data reduction.



Fig	6.4	Excising	data	in	the	analog	data	pond

CLUSTERING DATA

Another useful technique is that of clustering data. There are
different forms of clustering data. One of those forms is that of
grouping common values or ranges of values. Suppose there were the
following measurements:
1.56
1.78
1.67



1.57
1.65
1.70
1.62
1.73
1.77

A more concise way to represent the data is to cluster them. The
clustering might look like:
1.5 – 2
1.6 – 3
1.7 – 4

In this clustering, there are 2 values from 1.50 to 1.59, 3 values from
1.60 to 1.69 and 4 values from 1.70 to 1.79.
Another way to cluster the data is:
1.5 (1), (4)
1.6 (3), (5), (7)
1.7 (2), (6),(8),(9)

In this method, the ordinal number is maintained. Note that in the
first method of clustering the ordinal number of the value is lost.
But in either case, there is the potential for gross reduction of the
amount of space required to represent the numbers. And in fact,
there are many more complicated forms of clustering, like bit map
indexing. Fig 6.5 depicts clustering as a form of data reduction that
can be useful in conditioning data in the analog data pond.



Fig	6.5	Clustering	data	in	the	analog	data	pond

DATA RELATIONSHIPS

Another form of data conditioning that can be useful in the analog
data pond is that of establishing relationships between
measurements of data. As an example, suppose we measured air
pressure for tires and those measurements were captured as:
35.6 psi
36.1 psi
34.6 psi



36.2 psi
34.8 psi
35.7 psi
35.9 psi

While the tire pressure may be an interesting number, the
measurement becomes more interesting when the tire manufacturer
is attached to the pressure. Consider what the attachment of
manufacturer looks like:
35.6 psi Goodrich
36.1 psi Bridgestone
34.6 psi Goodyear
36.2 psi Bridgestone
34.8 psi Alliance
35.7 psi Michelin
35.9 psi Panther

Once the tire manufacturer is attached to the pressure, more
possibilities for analysis arise. But suppose even more data were
available. If the date the tire was installed were attached to the data,
the results might look like:
35.6 psi Goodrich July 20, 2016
36.1 psi Bridgestone Jan 5, 2013
34.6 psi Goodyear Oct 6, 2015
36.2 psi Bridgestone Nov 17, 2016
34.8 psi Alliance Dec 20, 2015
35.7 psi Michelin Mar 2, 2013
35.9 psi Panther Apr 28, 2014

And there are even more types of data that could be added. For
example, suppose the mileage the tire had on it was added to the
data. The result might look like:
35.6 psi Goodrich July 20, 2016 16,500 miles



36.1 psi Bridgestone Jan 5, 2013 85,980 miles
34.6 psi Goodyear Oct 6, 2015 24,000 miles
36.2 psi Bridgestone Nov 17, 2016 2,000 miles
34.8 psi Alliance Dec 20, 2015 14,970 miles
35.7 psi Michelin Mar 2, 2013 78,400 miles
35.9 psi Panther Apr 28, 2014 65,980 miles

Fig 6.6 shows that adding relationships to data in the analog data
pond greatly enhances the usability and desirability of data.

Fig	6.6	Making	the	analog	data	pond	more	valuable	through	relationships



PROBABILITY OF FUTURE USAGE

All the design decisions shaping the transformation and
conditioning of the data in the analog data pond are shaped by
probability of future usage. If a unit of data has a very low
probability of future access or even no probability of access, then it
can safely be removed from the analog data pond. But if a unit of
data has a high probability of access, then it is moved to a prominent
place in the analog data pond. In fact the higher the probability of
access the more prominently the data is placed in the analog data
pond.
Of course not all probabilities can be accurately predicted. Because of
this fact of life, it often makes sense to not throw away data that has a
low probability of access, but to place that data in a less conspicuous
location.
Fig 6.7 shows that probability of future access to data shapes all
design decisions of the conditioning and transformation structure of
the analog data pond.



Fig	6.7	Determining	the	probability	of	usage	in	the	analog	data	pond

OUTLIERS

Another factor of data in the analog data pond that sparks interest
among the analyst is the occurrence of outliers. An outlier is the
measurement of an event occurrence that does not fit the norm.



Typically, the measurements have a pattern. There are often small
variations from the pattern but most of the measurements fit a
predictable and definable pattern. An outlier is a measurement that
does not fit the pattern of the other variables nor has a variance
which is atypical of the other variables. Fig 6.8 shows a collection of
measurements of data and a few outliers.





Fig	6.8	Capturing	outliers	in	the	analog	data	pond

Outliers are always of interest and typically deserve special study. As
an example of outliers, suppose a telephone company does an
analysis of the length of calls made from New Jersey to Texas. Most
of the phone calls last five to six minutes. Some phone calls are
shorter and some phone calls are longer, but most are in that range.
However, the telephone company notices that there are three calls
greater than 24 hours.
The phone company decides to investigate those really long calls and
finds that:

One call was a computer working with another computer
transferring data.
One call was a malfunction of the equipment. The call actually
only lasted a minute but the monitoring equipment had a
problem and the call appeared to be a really long call.
The last call was a customer who was downloading movies and
was mistakenly using the wrong line to make the download.

When the organization examines the outliers, it can then decide what
it wants to do with them. One option is to remove them from the data
set. Another option is to redefine the data set to include them. A
third option is to create another data set with a new algorithm
defining the distribution of the measurements.
Once the data has been conditioned, it is then made available to the
analyst. The analyst then uses the transformed/conditioned data for
the purpose of analysis, as seen in Fig 6.9.



Fig	6.9	Analyzing	data	in	the	analog	data	pond

SPECIALIZED AD HOC ANALYSIS



There is another use for the analog data that has been conditioned. It
is entirely possible and likely that specialized analysis needs to be
done. It is also possible to use the conditioned data as a basis for a
specialized data analysis.
Say the conditioned data is for a manufacturing environment. Analog
analysis regularly uses the conditioned data for their analysis. But
suppose a new manufacturer arrives in the marketplace. The
corporation wishes to do a separate analysis of a subset of the
products that they produce. There is nothing wrong with separating
out the specialized product from the mainstream products and
performing a specialized analysis. With the conditioned data, it is an
easy task to use it as a foundation on which to do new and
unanticipated analysis. Fig 6.10 depicts the fact that ad hoc
specialized analysis can be done from the conditioned data.





Fig	6.10	Performing	ad	hoc	specialized	analysis	in	the	analog	data	pond

IN SUMMARY

The analog data pond then is the place where analog data is stored,
conditioned and analyzed. The conditioning process varies for every
type of data found in the analog data pond. Fig 6.11 shows the analog
data pond.

Fig	6.11	Analyzing	data	in	the	analog	data	pond



Chapter 7 
Application Data Pond

The application data pond is where application related data is placed.
Much of (but not all) application data is transaction related. A
transaction occurs and an electronic record is made of the
transaction. The electronic record is stored and used in the
operational systems of the corporation. The electronic record is then
used to conduct current business. After the electronic record has
fulfilled its active life in the operational environment, the record of
the transaction finds its way into the application data pond.
Another form of operational application data may find its way into
the application data pond. There may be customer lists, product
catalogs, packing lists, shipment schedules, delivery schedules,
phone call records, and so forth that are all captured as operational
application data.

DNA OF DATA

One of the shaping factors in application data is the infrastructure of
the operational system. The original recording of the data as it is
captured and settles into the operational application has a profound
effect on the storage and organization of the data that arrives in the
application data bank. In many ways the original operational
application capturing and storing the data becomes the DNA of the
application data. The DNA of the application data is as profound as
the ethnic race that each person on Earth has in his/her background.
In one form or another, each person has their own ethnic origin, and
the DNA of the person affects that person all their life. It affects their
health, their height and weight, and many other aspects of life. DNA
is one of the defining characteristics of application data, just as it is
with life.



Operational application data has the same profound DNA origins.
The operational processing of data determines the level of data
granularity, data organization, contents of the data, the business
events which are noteworthy, the timing of the events, the way data is
shaped and stored, and so forth. Fig 7.1 shows that the application
infrastructure has a profound influence on data as it enters the
application data pond.

Fig	7.1	Influencing	the	data	as	it	arrives	in	the	data	pond



DESCRIPTORS

The descriptors of the application data include such items as the
source of the application data, the approximate volume of the
application data, the frequency with which the application data is
harvested, and other related information. The descriptor information
is useful to the analyst in the application data pond in determining
how to create and accurately analyze application data.
It’s normal for the application data pond to contain data from many
applications. For a large corporation that is almost always true. It’s
also possible but quite rare that all of the application data that
resides in the data pond come from a single application of data.
Nearly all large corporations run on a multiplicity of applications,
both in-house and vendor solutions. Fig 7.2 depicts the descriptors of
the application data pond.



Fig	7.2	Depicting	the	descriptors	of	the	application	data	pond

STANDARD DATABASE FORMAT

It is normal for application-based data to be entered into the
application data pond in a standard relational database format. Most



applications have data stored in a row and column format. So
application data will usually be stored and transported into the
application data pond in this standard database format.
Note that this assumption about the application data pond is very
different than the assumptions made about the analog data pond. In
the analog data pond, information arrives in a raw data state –
usually a long list of measurements. In the application data pond, it
is common for the data to arrive in a database format.
Interestingly, just because data arrives into the application data pond
in a database format does not mean the advantages of a database are
necessarily carried with the application data. Just because data was
created in a relational database format does not mean the discipline
and rigor that accompany a database will extend to the application
data pond. Once the application data is in the data pond, it is
governed by whatever technology is used to manage the application
data pond, which most likely is not a standard database management
system.

BASIC ORGANIZATION OF DATA

Because of the application origin of the data, details in the
application data pond typically are divided into records. Records
have attributes and some attributes can be keys, while other
attributes can be indexed. Fig 7.3 shows the basic organization of
data inside the application data pond.



Fig	7.3	Organizing	data	inside	the	application	data	pond

INTEGRATION OF DATA

When data arrives in the application data pond, it may or may not
have a business related structure. If the data has been integrated
before being passed to the application data pond, then it may have a
structure inherently embedded into the data. But if the data has not
been integrated along the lines of business before entering the
application data pond, then the data will not magically become
integrated.



Having an integrated business orientation means the data is
organized along the lines of the major subject areas of the
organization. Typical corporate subjects are customer, product,
shipment, order, delivery, and so forth.
It is mandatory that the data have an integrated alignment with the
business if the analyst is to make any sense of the data. The biggest
impediment to the effective analysis of data in the application data
pond is the lack of integration.

DATA MODEL

In order to achieve integration of the data in the application data
pond, it is necessary to have a data model in place. Usually there is a
corporate data model. If there is no corporate data model, then there
are generic business models which are available.
Care must be taken in selecting the data model for the application
data pond. Separate data models are needed for business operations
than warehouse operations, for example. In most cases, the corporate
data warehouse data model is the appropriate model for the
application data pond. Fig 7.4 shows the data model which becomes
the “target” for the application data pond.



Fig	7.4	Creating	the	data	model	“target”	of	the	application	data	pond

There are many advantages to the data model. One advantage is that
the data model provides high-level guidance as to how data should
be related. This high-level perspective is through entities and
relationships or subject areas. But there is a lower level perspective
that accompanies the data model. At the more detailed level, the data
model provides a guide to such important elements as metadata. The
metadata gives a detailed description of the data, such as defining
records and their meaning, attributes and their meaning, keys,
indexes, data relationships and so forth.



The analyst preparing to use the application data pond finds the
metadata definitions very useful in preparing an analysis of the data
in the application data pond. But the data model for the application
pond has one complication that classical data models do not have.
The application data pond holds data over a lengthy period of time,
but the data model itself changes over time. As a result, the data
model for the application data pond needs to be quite flexible.
The analyst needs to know what changes have been made to
metadata over time, since they have to be factored in to the analysis
of the data found in the application data pond. So the data model for
the application data pond is a very sophisticated model.

NECESSITY OF INTEGRATION

If data finds its way into the application data pond in an integrated
state, the organization is lucky. If data finds its way into the
application data pond in an unintegrated state (which is the normal
case) the organization must transform the data after it has entered
the application data pond. This transformation step is very similar to
conditioning for the analog data pond.
If data is to be meaningfully used for analysis in the application data
pond, the transformation of data into an integrated state is
absolutely necessary. There are many reasons for the transformation
and integration of application data pond data. Consider the following
set of transformations, as seen in Fig 7.5.
The different applications have gender encoding. In order to make
the analysis consistent, the application data needs to be transformed
into a consistent definition of gender. The same considerations hold
true for measurement of distance. Inches and feet and yards need to
be converted to centimeters if consistent and meaningful analysis is
to be done.





Fig	7.5	Transforming	data	in	the	application	data	pond

The same sort of conversion must be done to put Australian and
Canadian dollars in a consistent currency, for example.
Unfortunately the conversions for integration that need to be made
in the figure are only the tip of the iceberg. There are many, many
other conversions required in order to transform the data into an
integrated state. And the analyst cannot do meaningful analysis
unless the data has been converted. Fig 7.6 shows that a fundamental
transformation of data is needed within the application data pond
from the time data enters until such time as data is usable within the
pond.





Fig	7.6	Transforming	until	the	data	is	useable

POINTING FROM ONE APPLICATION TO THE NEXT

In some cases when two applications are merged, the result is a
pointer from one to the next. This is a simple relationship.
As an example, consider the business activity of placing an order for
tickets for a Saturday night performance. There is a customer
application, database, and ticket order application with database. In
this case, there might be a simple structuring of the customer
application that looks like:
Bill Inmon
John Williams
Carol Renne
Georgia Burleson
Jeanne Friedman

The ticket database might look like:
Sat night 7:15 seat A12
Sat night 7:15 seat A13
Sat night 7:15 seat A14
Sat night 7:15 seat A16

Once the data is integrated, the result might look like:
Bill Inmon Seat A12, seat A13
John Williams
Carol Renne Seat A15
Georgia Burleson Seat A14
Jeanne Friedman

Fig 7.7 shows the integration of a simple pointer relationship
between applications.



Fig	7.7	Integrating	data	within	the	application	data	pond

INTERSECTING APPLICATIONS

A more complex relationship is that of two applications intersecting.
When two applications have an intersection there is data
independently created as a result of the crossover. The independently
created data forms its own independent collection of data. As an
example of an independently created collection of application data,
suppose there was an oil company and a gasoline distribution
company. On Sept 2, the distribution company makes a delivery of
gasoline. The database might look like:
Oil Company Distribution Company
Standard Oil Flying Horse Shipping
Conoco Akers Distributing



Texaco

Now suppose a set of deliveries were done. A delivery might look
like:
Delivery AS15-YR
From Standard Oil
To 6534 Wolfensberger Road
Castle Rock, CO
By Flying Horse Shipping
Amount: 2000 gallons
Date Sept 2

The intersecting data stands in compliance with the existing
application data. Fig 7.8 shows that there can be intersection data in
the application data pond as well as other types of data.

Fig	7.8	Different	types	of	data	in	the	application	data	pond



SUBSETS OF DATA IN THE APPLICATION DATA POND

On occasion, the analyst may wish to select data from application
data that have already been integrated. This too is a possibility. Fig
7.9 shows that a subset of data from an application can be selected
and stored in the application data pond.

Fig	7.9	Choosing	an	application	subset	to	store	in	the	application	data	pond

As an example of data that can be selected, suppose the application
database contains all telephone calls made in the month of May. The
analyst may wish to select all phone calls greater than three minutes
made on May 15. In doing so, the analyst greatly narrows down the
work the system has to do in order to find the data they are looking
for.



IN SUMMARY

Once data has been integrated, it is now fit for analysis. Fig 7.10
shows that analysis can be done on data in an integrated application
data pond.

Fig	7.10	Analyzing	data	in	the	application	data	pond



The DNA of an application is the infrastructure of the data as it exists
in the operational environment. The infrastructure of operational
data extends well into the application data pond. The data
descriptors found in the application data pond are of great use to the
analyst.
The normal case is for data in the operational environment to have
been stored in a relational format. The relational format has records,
attributes, keys, indexes and so forth. When the data is placed in an
application data pond, the data reflects its relational origins even
though the data management of the application data pond is not a
relational DBMS.
However it occurs, data in the application data pond must be
integrated. Integration is a necessity of the business analyst that will
be using the data.
Data in the application data pond goes through a conditioning
process, just as data in the analog data pond must be conditioned.
However, the conditioning that occurs in the application data pond is
very different from the conditioning that occurs in the analog data
pond.



Chapter 8 
Textual Data Pond

The third kind of data collection is the textual data pond. There is
much textual data in the corporate world. Unfortunately, very little
textual data is ever converted to a state where it’s fit for analysis or is
ever used as a basis for decision making. Yet there is a tremendous
amount of textual information that has a lot of potential. There is no
reason why textual data that finds its way to the textual data pond
cannot be used for analytical processing.

UNIFORM DATA AND THE COMPUTER

The reason why textual data has such a hard time being used for
corporate decision making is that the computer requires data to be
served up in a uniform manner. The computer is good at reading one
record, processing it, then reading another record that was in the
same format as the previous record. The system thrives on repetition
of processing. When the computer has to change its mindset with
every record, it will have a hard time. And with text, every word must
be treated as a completely new universe.
For this reason, text has been treated in a very superficial manner
within the bounds of computerized processing. Computer
technology and text (i.e., narration) are the digital equivalent of oil
and water. They just don’t mix well.

VALUABLE TEXT

Some of the many places where text contains valuable information
for making managerial decisions include:

Corporate contracts



Corporate call center conversations
Customer feedback
Medical records
Insurance claims
Human resource records
Insurance policies
Loans applications
Corporate memos
And many other places.

However, most corporations collect their text, put it in a file, and
never look at or analyze it again. The info just sits in a file and
collects dust.
There is a good reason why corporation don’t look at text: there’s so
much of it. If a person were to sit down and read a large collection of
text, the person would not be able to recall a small fraction of what
was read. The human brain is just not a good processor of large
amounts of textual data.

TEXTUAL DISAMBIGUATION

A profound technology called “textual disambiguation” has changed
the ability of text to be used for decision making. That technology is
used for reading and analyzing text and then transforming text into a
standard database format, with the context of the text identified in
the database format.
Most corporations have not yet discovered textual disambiguation.
That’s why most text arrives in the textual data pond in a state of raw
text. Sometimes text arrives as formal language, informal notes,
slang, vulgarities or even other languages.
The most common text forms are emails, tweets and other social
media, but the data can also arrive via physical reading technology
such as OCR (optical character recognition) or voice transcription.
However it arrives at the textual data pond, documents and text are



usually still in the form of unstructured (to a computer) narration.

TEXT SENT TO THE DATA POND

Fig 8.1 shows documents that have been captured and have been sent
to the textual data pond.

Fig	8.1	Sending	documents	to	the	textual	data	pond

If the corporation attempts to read and make sense of the text in its



raw, narrative state, they’ll find that only a very superficial analysis
can be done. If the corporation is serious about making use of the
textual data pond, it is mandatory to pass the raw text through
textual disambiguation.
Note that textual disambiguation is merely another form of
transforming and conditioning data. The need to condition and
transform data is seen in both the analog data pond and the
application data pond. However, textual disambiguation is very
different from data reduction or integration of application data.
So it is not unusual that textual data in the pond needs to go through
its own conditioning and transformation process. What is
noteworthy is that the different processes used for conditioning and
transforming the data ponds are completely different from each
other. There is very, very little overlap (if any) among the different
techniques used to condition and transform data in the different data
ponds. Fig 8.2 shows the need for textual disambiguation in the
textual data pond.



Fig	8.2	Applying	textual	disambiguation	in	the	textual	data	pond

OUTPUT OF TEXTUAL DISAMBIGUATION

The net effect of textual disambiguation is the ability to store text in a
standard, uniformly structured database and to store the text along
with its context. Once text is restructured into that format, the text
can be read and analyzed by standard analytical processors.
In order to store the text in a standard database format, it is
necessary to store the text in a form where there is a record. Each



record has the text that is processed, along with its context, the byte
number of the text, and the name of the document. In order to
visualize how this might look, consider the following example in Fig
8.3.



Fig	8.3	Disambiguating	text	example



Here, a lease has been made between an individual and a
corporation. The text defines the terms of the lease. The lease has
been read and passed through textual disambiguation. Once having
been processed, the text has been reduced to a database format. In
the database format are the identification of the document, the byte
address of the text that has been captured, the text itself, and the
context of the text.
Once the text has been reduced to the form of a database and once
the context of the text has been determined, the text can then be read
by a computer and processed analytically. It is interesting to examine
the functions that textual disambiguation performs in the act of
disambiguating text.

INHERENT COMPLEXITY

Language is inherently complex so it is no surprise that textual
disambiguation is quite complex as well. Indeed, there are over 90
different functions that algorithmically define the inner workings of
textual disambiguation. Some of (but not all of!) the more interesting
workings of textual disambiguation will be described here:

Inline contextualization. Inline contextualization is the process
of identifying text and its context by examining the words that
surround it. For example, given the text …signed by Bill Inmon,
leaseholder… Inline contextualization only works on text that
has predictable occurrences of data such as a contract. In this
case, the leaseholder is identified as “Bill Inmon.”
Proximity. Words in proximity to each other have different
meanings than words not in proximity to each other. Given the
text …Denver Broncos won the Super Bowl… the words Denver
Broncos are taken to mean a professional football team.
Proximity analysis works on words in any order.
Alternate spelling. In England, the word color is spelled colour.
Alternate spelling analysis works for many types of functions.
Homographic resolution. In many cases the interpretation of a



word or acronym is shaped by the understanding of who wrote
the term. A cardiologist interprets “ha” as heart attack. An
endocrinologist interprets “ha” as hepatitis A, while a general
practitioner interprets “ha” as head ache, and so forth.
Homographic resolution is a sophisticated form of alternate
spelling.
Acronym resolution. In the military, AWOL means absent
without leave. Acronym resolution is a form of alternate
spelling.
Custom variable recognition. In the US, the digits 999 999 9999
are interpreted to mean a telephone number. Corporations have
many variables which are recognizable by the structure of the
variable itself.
Taxonomy resolution. When a document refers to a Volkswagen
or a Honda, it is referring to a car. Taxonomy resolution is the
single most important function of textual disambiguation.
Date standardization. July 5, 1999 is the same thing as
1999/07/05. Date standardization is very common and is very
useful.

This short list of functions merely reflects some of the more
prominent functions of textual disambiguation. There are many more
functions that need to be accomplished by textual disambiguation in
order for text to be reduced to the form of a database.
It is noteworthy that merely processing text is not enough to do
analytic processing. In order to do effective analytic processing, it is
necessary to identify and to process context as well. And context of
text is much more difficult to handle than the text itself.

TEXTUAL DISAMBIGUATION FUNCTIONALITY

Fig 8.4 shows some of the functions of textual disambiguation.





Fig	8.4	Disambiguating	text	functions

TAXONOMIES AND ONTOLOGIES

Each data pond has a target that allows the data in the pond to relate
to the business of the organization. In the application data pond,
there was the corporate data model. But the corporate data model
does not relate well to the world of text. Instead, in text there are
taxonomies and ontologies.
Taxonomies are classifications of terms. There are many, many
taxonomies in the world. As some simple examples of a taxonomy,
consider the following:
Car
Honda
Porsche
Volkswagen
Ford
Toyota
Or
Tree
Elm
Pine
Fir
Oak
Walnut

A taxonomy then is nothing but a classification of terms. An ontology
is a grouping of related taxonomies. For another example of an
ontology, consider the following:
Country
USA



Canada
Mexico
Australia
South Africa
And
USA
Texas
New Mexico
Arizona
Colorado

The relationship between taxonomies is that the US is made up of
states. Together these two taxonomies form an ontology.
There are an almost infinite number of taxonomies (and ontologies).
Taxonomies and ontologies form the target foundation for the textual
data pond as seen in Fig 8.5.



Fig	8.5	Leveraging	taxonomies	and	ontologies	in	the	textual	data	pond

VALUE OF TEXT AND CONTEXT

The value of having both text and context can be illustrated very
easily. Suppose you have some text about people. You have different
names in your text. You have Joe and you have Susan and you have
Mike and you have Terry. Now suppose you want to find Joe who is
an army officer. If you do a query against all Joe’s, you get bartenders,
convicts, newborn babies and airplane pilots. But if you have
information about all Joe’s that have been identified by context, say



government employees, you can now make a query and find the Joe
(or Joe’s) that are army officers.
Context allows you to qualify exactly what you are looking for and to
the business analyst, that is a necessary condition.
Fig 8.6 depicts the usage of context in a query format.

Fig	8.6	Applying	context	in	the	textual	data	pond

In this case a query would be made that says:
Find all occurrences of “Joe” where context = army officer.
The results of the query would be a reference to all people named Joe
who are army officers.

TRACING TEXT BACK TO THE SOURCE

In case there was a question as to the validity or accuracy of the query,
any reference to text can always be traced easily and quickly back to
the originating source.
The reason why it is easy to trace a reference back to the originating
source is that when textual disambiguation is done, the byte of the
document and the name of the document are stored with each
reference. Therefore, whenever you have a question about the work
that has been done by textual disambiguation, you can always go
back to the original document and verify that disambiguation was
performed correctly.



MECHANICS OF DISAMBIGUATION

As an example of the mechanics of disambiguation, consider the
taxonomy developed to identify sentiment. Sentiment occurs in many
places – in tweets, in emails, in documents, and so forth. It is often
quite useful to gauge tone in the message. The way tone is evaluated
is through the usage of a sentiment taxonomy. Fig 8.7 shows a simple
taxonomy that can be used to identify sentiment in text.



Fig	8.7	Applying	sentiment	analysis	in	the	textual	data	pond

In reality, a sentiment taxonomy would be much more involved than
that shown in the figure. The simple taxonomy above is merely for
the purposes of illustration.



Textual disambiguation reads the raw text and then matches the
contents of the taxonomy against the raw text that is being analyzed.
When a word is discovered that matches a word in the taxonomy, the
inference is made that the message has an expression of sentiment.
In such a fashion, a document can be analyzed and the tone of the
document gauged.
Once the tone of the document is weighted and placed into a
database, then multiple messages can be analyzed by the computer
using standard analytical and standard visualization technology.

ANALYZING THE DATABASE

By creating a database, the computer can then perform the heavy
lifting analysis. As an example, suppose there was a restaurant chain
receiving feedback from its customers. Many customers are sending
messages on a daily basis.
The messages cover a wide spectrum of topics. Some discuss the
menu. One item was too salty. Another too hot. Another item had too
small of portions. Others discuss the waiter/waitress. The waiter was
slow. The waiter had a bad attitude. The waitress was very nice. Some
topics dealt with cleanliness. The floor was wet. The table was not
wiped. The lights were too dim. Other topics were about almost
anything you could imagine – the parking lot, the restroom, the
vending machines, and so forth.
In a month’s time, the restaurant chain receives over 100,000
messages from its customers. There simply are too many messages
for any person to read and assimilate the information contained in
the messages. Yet the feedback from the customer is critical to the
happiness of the customer experience. And the happiness of the
customer is the key to customer loyalty and repeat business. It greatly
behooves the restaurant chain to listen to its customers.
So the restaurant chain decides to run its customer feedback through
textual disambiguation. After reading 100,000 messages a month, a
database is created. The database is then read into standard



analytical software, which allows them to send canned, but still
personalized automated responses.

VISUALIZING THE RESULTS

A visualization is produced that looks like that seen in Fig 8.8.



Fig	8.8	Visualizing	feedback	in	the	textual	data	pond

The different categories of comments are divided into several
categories:



Off menu items – non entrée items on the menu
On menu items – the entrees served by the restaurant chain
Service – comments about the waiters, waitresses, cashier,
manager, etc.
Price – the cost of food
Curb – comments about the exterior of the restaurant and
service outside the restaurant
Ambience – how clean the restaurant is, what atmosphere the
restaurant has
Promotions – what comments there are about the promotions
done by the restaurant.

A word of wisdom is needed to explain the interpretation of
comment sentiment. At first glance it appears there are a lot of
negative comments. But experience has shown that people are more
inclined to message a restaurant when there is a negative experience.
When a person goes to a restaurant and has a pleasant experience
there is rarely feedback for the restaurant. Therefore a ratio of
85%:15% of negative to positive experiences is the normal
expectation.
If a restaurant is getting more than 85% negative comments then
something is wrong. If less than 85% negative, that branch is doing
something right.
Looking at the comments and their sentiment expressed in Fig 8.9
shows some surprising results. One is that there are almost no
comments at all about price. This is an indication to management
that it may not be charging enough for its food. The same sort of
observation can be made about promotions. There simply are no
comments that anyone makes about the promotions the restaurant is
doing. This implies that the promotions are ineffective. The message
that the restaurant chain is not charging enough and that it ought to
be doing more effective promotions is really important to the
management of the chain.



IN SUMMARY

The textual data pond is the place where text resides. In order to be
effective, text must go through a transformation and conditioning
process. The transformation and conditioning process is called
textual disambiguation.
The net result of textual disambiguation is the creation of text in a
standard database format where both text and context have been
identified. Fig 8.9 shows the textual data pond.



Fig	8.9	Analyzing	text	in	the	textual	data	pond



Chapter 9 
Comparing the Ponds

At first glance, the different data ponds seem to be the same. While
there are many structural similarities among the different ponds,
there are some important and distinct structural dissimilarities as
well.

SIMILARITIES ACROSS THE DATA PONDS

In terms of similarities, all data ponds:
Ingest raw data, usually lots of it
Transform/condition the raw data into a form that is suitable for
analysis
Produce a uniform, integrated structuring of data that is
suitable for analytical processing
Support business analysis with their final output
Ultimately send their data to the archival data pond
Have similar entry points for raw data
Produce data that is fit for analytical processing
Have a supporting infrastructure of documentation to help the
business analyst.

From a structural standpoint then, there are many core similarities
among the different ponds of data. But for all the structural
similarities, there are some important and striking differences as
well.

DISSIMILARITIES ACROSS THE DATA PONDS

The structural dissimilarities among the different data ponds
include:



The raw data entering the pond is very different from the raw
data found in other ponds. One pond contains analog data,
another pond contains application data, and another pond
contains textual data.
The transformation and conditioning process for each pond is
very, very different from one pond to the next.
The type of business analysis conducted on the final data state
of the pond is very different.

RELATIONAL FORMAT FOR FINAL STATE DATA

An interesting question arises when looking at the different pools.
Does the technology holding the final state of the pool have to be in a
relational format? Fig 9.1 poses this question.

Fig	9.1	Requiring	a	relational	format?

The answer is no. There is nothing special about the relational format
other than the fact that the vast majority of analytical and
visualization packages available operate against relational data. The
world of analytical processing has been around for a long time, long



before there were data ponds. It is no surprise that analytical
processing supports the relational data model.
Having stated that, there is no other reason why the final state data
in the data pond must be in a relational format. If there is an
analytical tool that operates on data in other than a relational format,
then there is no reason why that analytical package cannot be used.

TECHNOLOGY DIFFERENCES

A related question is whether the final data state of each pond has to
be in the same technology. The only reason why an organization
might want the technology to be the same is because of the overhead
of supporting more than one platform.

TOTAL EXPECTED VOLUME OF DATA IN THE DATA POND

Another related and interesting question is: what total volume is
expected in each data pond? The answer is that the total volume in
any given data pond depends entirely upon the business goals and
the nature of data in the business. One industry will have more of
one type of data and less of another in their data ponds than another.
An engineering firm or a manufacturing organization is probably
going to have lots and lots of analog data. A telephone company is
going to have lots of application data. And a marketing research firm
is going to have lots of textual data.

MOVING DATA FROM POND TO POND

An interesting architectural question is: once the final state data has
been created inside a data pond, can the data be moved to another
pond and remain resident in the pond?
The answer is that it is certainly technologically feasible and possible
to move data from one data pond to the next and allow that data to



remain resident in the source pond. But from an architectural aspect,
such a move rarely makes sense. Much of the data pond’s value is its
supporting infrastructure. In addition to the data in the pond, there
is important infrastructure found in the data pond, such as:

Metadata definitions
Metaprocess definitions
Descriptor information.

It is one thing to shuffle data from pond to pond. It is quite another
thing to move the infrastructure that supports the data from pond to
pond as well. For these reasons, it normally does not make sense to
move data outside of the source pond. Fig 9.2 addresses this issue.



Fig	9.2	Avoiding	data	movement	from	one	pond	to	another

DOING ANALYSIS FROM MULTIPLE PONDS

Another interesting architectural issue is whether it is possible to do
analytics based on data found in more than one pond. While possible
to do, analytics are usually restricted to the data found in a single
pond. This restriction has more to do with the type of data found in
the pond and the type of analytics being conducted.
If the analysis requires data from more than one pond, then there is



no reason why analytics cannot be done from more than one pond.
Fig 9.3 shows the analysis that is conducted from more than one
pond and that such analytics are a real possibility.



Fig	9.3	Can	analysis	be	done	using	data	from	more	than	one	data	pond?	Yes!

USING METADATA TO RELATE DATA FROM DIFFERENT
PONDS

If analyzing data from more than one data pond it is necessary to
relate the data from one pond to data in the other. In some cases, this
relationship is very quixotic. To facilitate the exchange of data across
ponds it is necessary to use the metadata infrastructure.
The metadata for each pond will describe the data in the pond. If it is
possible at all to relate data from one pond to another, the
relationship is first realized in the metadata. Fig 9.4 shows that when
data from different ponds is related, the relationship begins at the
metadata level.



Fig	9.4	Synchronizing	metadata	is	required	to	analyze	across	data	ponds

WHAT IF…?



Yet another interesting question is what if there is data that is not
analog data, not application data, and not textual data that finds its
way to the raw data pond? It is certainly possible to have data enter
the raw pond that does not fit neatly into one of these three
categories. If that is the case, what should be done with the data?
The answer is to not try to place the data in a data pond that it does
not belong in. That would be a mistake. There are many reasons why
this should not be done.
Instead, a good idea is to carve out a part of the raw data pond
reserved for data that does not fit into one of the “standard” data
ponds. This area can be called the miscellaneous data section of the
raw data pond. Fig 9.5 shows the miscellaneous data section of the
raw data pond.

Fig	9.5	Carving	out	a	miscellaneous	data	section



The miscellaneous section of the raw data pond can then be used to
support business analytical processing, just like other data in the
data lake. However, there is a note of caution. The data in the
miscellaneous section of the raw data pond must be conditioned in
order to support business analytical processing. Fig 9.6 shows the
conditioning (transformation and integration) that must be done
against data in the miscellaneous data section of the raw data pond.

Fig	9.6	Conditioning	must	be	done	against	the	miscellaneous	data	section

IN SUMMARY

The data lake can be divided up into separate data ponds. Each data
pond has its own data and its own characteristics. Seen organically,
the data lake and its subdivision of data ponds are seen in Fig 9.7.





Fig	9.7	Understanding	the	data	pond	landscape

Each data pond services its own kind of data and has its own unique
analysis that can be performed on data in the pond. In addition, if
data is entered into the lake that does not fit into the analog,
application, or textual data ponds, then the data can be stored in a
special data section of the raw data pond.



Chapter 10 
Using the Infrastructure

Nothing elucidates a concept better than an example.
Suppose there was a corporation that had a wide variety of data. The
corporation has applications that governed different aspects of their
business. There are online systems running transactions that manage
the day-to-day interchanges between the corporation and customers.
The corporation has data warehouses where corporate analysis is
done. The corporation has data marts that are fed by the data
warehouse where key performance indicator (KPI) calculations are
made periodically.
Yet the corporation also has a lot of other data as well. The firm has
competitive data, engineering data, financial data, emails, economic
data, tweets, contracts, call center data and a whole host of other data
types.
Naturally, the corporation starts to place a lot of its data into a data
lake.
After a while, storing data in the lake becomes onerous. Management
asks why they are putting information into a data lake when no
analysis is being generated from the lake. Or if there is analysis, why
is it so slow and expensive?
The organization wakes up to the fact that they have created a “one
way” data lake that’s more of a liability than an asset. The “one way”
data lake simply does not support business decision making in any
meaningful way.

“ONE WAY” DATA LAKE

Fig 10.1 depicts a “one way” data lake that has been built by well-



intentioned Big Data developers and data scientists.

Fig	10.1	Avoiding	the	“one	way”	data	lake

One day a manager reads a book describing how to turn the data lake
into a positive business asset. The manager understands the
problems with the “one way” data lake and decides to build an
architected data lake/data pond environment that can truly support
decision making in the corporation.

TRANSFORMING THE DATA LAKE

The manager hires a consulting firm and soon they are busily



transforming the “one way” data lake into an architected data lake
with data ponds. Fig 10.2 shows the data lake/data pond architecture
that has been built from the data found in the “one way” data lake.

Fig	10.2	Transforming	the	“one	way”	data	lake	into	an	architected	data	lake

The newly architected data lake contains three primary data ponds –
an analog data pond, and application data pond, and a textual data



pond. In addition, there is some small amount of data in the
miscellaneous data section of the raw data pond.

TRANSFORMATION TECHNOLOGY

The consulting firm also brings in three distinct technologies for the
purpose of transforming/conditioning the raw data in each of the
data ponds. For the analog data pond, they use technology that can
do data reduction and data compression. For the application data
pond, the consulting firm brings in classical ETL technology. And for
the textual data pond, they deploy textual disambiguation software.
In addition, the consulting firm brings in technology to manage the
descriptors, metaprocess information and the metadata that are
found in the data lake. Soon the “one way” lake is transformed into a
useful tool for the firm.
The transformation process requires work, investment and time. Still,
the result is an infrastructure that can really be used for analytical
processing. An asset of inestimable value for the corporation.

SOME ANALYTICAL QUESTIONS

As an example of the worth of the architected data lake, consider
some simple analytical questions. Suppose the corporation wanted to
find out what corporate revenues were for the last quarter. Now
suppose the corporation goes and looks in the
untransformed/unconditioned data lake environment. In the lake,
they have transactions recorded in Australian dollars, Mexican pesos,
Canadian dollars, and US dollars.
Certainly the corporation can find the financial transactions. But
converting the monetary amounts on the transactions into a common
value is a confusing and onerous process that the analyst would
rather not have to do. When management wants answers,
management wants the answers now. Management does not want to
have to wait on complicated calculations and complex analysis.



It is one thing to calculate conversion rates. It is another thing to
convert rates as of some moment in time in the past. The conversion
calculation is a messy, inaccurate affair. Fig 10.3 shows what
management gets when they query the data lake.
But what happens when management queries the architected,
integrated data lake/ data pond environment? Since the data has
been integrated into a cohesive and accurate number, management
quickly gets their answer and has confidence in the value.





Fig	10.3	Querying	the	data	lake

There is no question that building integrated data ponds takes work
and investment. But that investment comes back many times over in
the analysis that can be performed with the data after it has been
architected.
The world of technology has millions of dollars to build things wrong
and not a dime to build things right. And this shortsighted attitude
comes back to bite the clients more often than the vendors.
Now suppose management has another question to be addressed by
the untransformed data lake. Management wants to know how many
female employees have taken the SAT exam.
When management looks into the untransformed data lake, they find
that every application has encoded the designator for gender
differently. One application has encoded women as 0. Other
applications have encoded women as F. Another application has
encoded women as X, and so forth.
When the applications were built each developer had his/her own
way of designating gender. It is one thing to find data. It is another
thing to interpret the data accurately. Once again, management just
wants answers. They don’t want a big explanation about calculations
and algorithm processes. But where the applications have not been
integrated, management cannot get what it wants. Fig 10.4 shows that
access and analysis of unintegrated data is a difficult thing to do.





Fig	10.4	Challenging	queries	against	unintegrated	data

However, when management accesses and analyzes data from the
architected, integrated data lake/data pond environment, the answer
is easy to locate. In addition to getting the answer quickly,
management has confidence that the answer is accurate as well and
doesn’t have a bunch of asterisks next to the figure.

QUERYING TEXTUAL DATA

Now let’s consider another type of data, textual data. Management
wishes to know how many books Bill Inmon has written.
Management issues a natural language processing (NLP) query to
the data lake. When NLP sees the name “bill” it marks the record.
Soon all sorts of “bills” start to appear. There are bird bills. There are
billboards. There is an Australian billabong. There is Bill Bryson.
They are bills in front of Congress. There are dollar bills. There are
hotel bills. And along the way, there are a few references to Bill
Inmon.
Doing an un-contextualized query against raw text is very confusing
and not very productive. Fig 10.5 shows the confusing query that
comes from looking at the untransformed data lake.





Fig	10.5	Confusing	results	from	the	untransformed	data	lake

But when management looks at the contextualized data in the textual
data pond, they see Bill Inmon is the author of 55 books.
Once again, the integration and transformation work done by the
creation of a disambiguated textual data pond has paid off in speed
of analysis and in terms of confidence of results.

REAL ANALYSIS

The queries and the analysis discussed here are trivial compared to
the real analytical queries that organizations do. But these trivial
queries are useful in pointing out what the problems of analysis are.
When trying to use an untransformed data lake for analysis the
results are confusing and complex. It takes quite an effort to conduct
a serious analysis of data in the untransformed data lake. And
management does not like long and complex efforts. Fig 10.6 shows
that using the untransformed data lake as a basis for analysis is a
complex and tedious chore. No wonder the untransformed data lake
becomes a “one way” street and turns into a garbage dump.





Fig	10.6	Choosing	integrity	and	clarity	over	ambiguity

It takes time and effort to read, analyze, integrate and condition the
data in the data ponds. But that effort turns the data lake into an
asset rather than a liability.

IN SUMMARY

If you are serious about turning your data lake into a useful
corporate asset, you must go through the effort and expense of
transforming the raw data. The data ponds do the first high-level
separation of data into generic data types, and the transformation /
conditioning phase turns the data into something that is useful for
corporate business analysis.
The alternative to not building the data lake/data pond environment
is to build a corporate structure that turns into a liability rather than
an asset. It’s much cheaper to get things right the first time around.



Chapter 11 
Search and Analysis

There is much confusion concerning the meaning of analysis and
analytics. Obfuscating the marketplace are vendors. Vendors always
try to sell their solution as if it were the only solution. Vendors don’t
like architectures because vendors look at an architecture as an
obstacle to making a sale. In reality, vendors don’t like anything
except a sale. Which leads vendors into the bad habit of really
confusing customers and the marketplace.
In order to hear a non-vendor influenced discussion on what
analysis/analytics are, consider the following. A corporation has a
simple desire to find out how many xxxxxxx does yyyyyyyy use in a
zzzzzzzz time frame. Fig 11.1 depicts this typical analytical question.



Fig	11.1	Answering	the	typical	analytical	question

When you stop to analyze the question, it is seen that there are two
elements that have been posed:

Find the data that can be used to answer the question
Analyze the data once found.

Fig 11.2 shows the two elements of analysis/analytics.



Fig	11.2	Understanding	the	two	elements	of	an	analytical	question

If the criteria for finding the data are straightforward and if the data
is indexed, then finding the data is an almost trivial thing to do. But
there can arise some complications. Suppose the search is for
something that is hidden or disguised, such as encrypted data. Or
what if the data is marked by only very faint markers, say for a bank
account that was opened fictitiously and has been operated for
clandestine purposes. There are many ways data can hide and in
these cases, finding data may not be a trivial task at all.
Another way data can hide is by lurking behind a lot of mundane
data points. Suppose you wanted to find a particular man in the US
and you only knew that he was a man. You would have to search
through each male in the US and see if he was the man you were



interested in. Such a search would be anything but easy and efficient.
Once the data is found, then it needs to be analyzed. Analyzing data
too can be complex. If all data analysis means is to display selected
elements of data then analysis is easy. But sometimes analysis of data
entails complex algorithms and complex calculations. In any case,
there are two very different facets of what is meant by data analysis.
Fig 11.3 shows these two sides of the analysis.



Fig	11.3	Doing	data	analysis

There are technologies dedicated to these two aspects of analysis.
One type is called machine learning and concept search. Machine
learning and concept search are dedicated to searching for data
where the criteria for searches are murky.



Analysis has the technology of summarization and visualization. Not
only is analysis divided up into two distinct facets – search and
analysis, but there are different kinds of search. One kind of search
looks for very finite sets of data. A person may go looking for the last
medical checkup record for Bill Inmon, since there is only one such
record at any moment in time.
Or a search may be for a large set of data. Looking for the medical
records for a population is one such search. There are many, many
medical records for the population of a state or even a city, for
example. Fig 11.4 shows that there are different kinds of searches.





Fig	11.4	Understanding	the	two	basic	types	of	search

The whole subject of doing a search is complicated by the data that is
being operated on. When it comes to finding data, the
untransformed data lake is very difficult to find anything in. That is
because data is very unintegrated inside the untransformed data
lake. The lack of data integration inside the untransformed data lake
greatly contributes to the difficulty of finding data inside the lake.
The criteria for searching for data inside the unintegrated data lake
are very unclear. The lack of clarity inside the data lake makes for a
difficult experience.
But once the data lake becomes integrated, once there are data ponds
and the ponds are conditioned, then searches become much, much
easier and straightforward. Fig 11.5 shows the difference between
searching the data lake and searching the conditioned data inside the
data ponds.
In fact, there are a lot of reasons why trying to find the right data
inside the data lake is so difficult:

There is so much data that data “hides” or is indistinguishable
from other data
Once you have found something, you are not sure it is actually
the data you want
The criteria for finding data is very unclear
Even after data has been found, it needs to be converted before
it can be used
The qualifications for data are unclear.





Fig	11.5	Searching	the	data	lake	vs.	searching	the	conditioned	data	inside	the	data	ponds

And data inside the pond – once it has been conditioned – is easy to
access and analyze. Fig 11.6 shows why data inside the ponds are
suitable for analysis.





Fig	11.6	Finding	data	in	the	data	lake	is	easy	for	several	reasons

After data is found, it’s then time to analyze. Data analysis software
and technology has been around for a long time, so there are many
ways to analyze data once found. Fig 11.7 shows that analysis of data
follows after the search.



Fig	11.7	Analyzing	the	data	that	has	been	found

There are many forms of analysis. Some of those forms include:
The mere sorting of data. Sometimes sorting data allows
important data to surface and become obvious when that data



would not otherwise be so.
Summarizing data. On occasion, summaries of data bring to
light data that would otherwise be lost or overlooked.
Comparing data. Looking at data and comparing and
contrasting to other sets of data often yields insight.
Exception analysis. Finding outliers and exceptions often lead to
insight.

Perhaps the most powerful form of analysis is visualization, studying
data in a diagram or picture representation. Visualization is popular
because with a properly created visual setup, massive amounts of
data can be depicted in such a fashion that important conclusions are
immediately obvious. See Fig 11.8.





Fig	11.8	Visualizing	the	data

CONFUSION SPREAD BY THE VENDORS

So how do vendors confuse the marketplace when talking about
analysis and analytics?

Vendors present their product as a final solution when it is only
part of a solution
Vendors hate architecture because it lengthens their sales cycle
Vendors make assumptions about data that simply are
unrealistic
Vendors confuse search with analysis
Vendors don’t recognize that they are part of a solution.

These are the most common, but there are many other ways that
vendors confuse the marketplace. It is in the vendor’s best interest to
sow seeds of confusion.

IN SUMMARY

There are two aspects to analysis – the search of data and the analysis
of that data once the search is complete. The data search is much
easier and accurate when the search is done against transformed data
as found in the data lake/data pond architecture.



Chapter 12 
Business Value in the Data Ponds

At the end of the day, if the data lake and data ponds do not provide
business value then they will not be supported by the organization
for very long. Interestingly, the different data ponds do have
potential for providing business value. But the value provided by
each data pond and the way that business value is provided are very
different.

BUSINESS VALUE IN THE ANALOG DATA POND

The analog data pond can provide business value in one of two
manners. There can be a handful of records that are found or there
can be patterns of data that are developed across a vista of many
records of data.
Consider a company that manufactures airbags for cars. If an airbag
malfunctions, there can be very serious consequences. Suppose an
accident occurs where an airbag does not go off. The accident
investigator finds the manufacturer of the airbag. Then the
investigator determines that the airbag was manufactured in March
1995 at the Phoenix, Arizona facility. The company now looks back
into their analog data and finds all other airbags that were
manufactured in March and April of 1995 and alerts the owners of
the cars that have these airbags to have their airbags checked, thus
avoiding a potentially serious consequence. In this case, the analog
data was examined to find a handful of records that had potentially
very serious consequences.
Another business value of analog data is looking across large vistas
of data in a hurry. One day, management wishes to rethink the way an
airbag is manufactured because there is a new technology that



triggers an airbag more efficiently and safely. The manufacturer looks
at a massive amount of analog data to determine just how many
airbags there are with the older firing mechanism. Fig 12.1 shows
these two business values of the usage of analog data.





Fig	12.1	Benefiting	from	analog	data

As another example of finding a few valuable records, consider
telephone call record detail records. One day the government finds
telephone calls between terrorists. There may be millions and
millions of telephone call detail records, but only a handful of those
are from terrorists. There is no question of the value of being able to
identify terrorists and thereby preventing acts of terrorism. In this
case, many, many records are examined in the hopes of finding just a
handful of records.
Looking across vistas of data is a different matter altogether. Instead
of looking for a few points out of many, the analyst is looking for
patterns of data which are manifest across many, many records. As
an example of looking for patterns, the analyst may find that certain
equipment starts to malfunction or function in a less than accurate
fashion towards the end of the month. Upon further investigation, it
is found that maintenance to equipment is done on the first of the
month. By month’s end, the machinery needs to be recalibrated and
cleaned. This important pattern of data is detected not just by
scouring records, but by using their metaprocess information in
conjunction with the records themselves. Fig 12.2 shows the types of
business value that can be derived from the analog data pond.





Fig	12.2	Types	of	business	value	derived	from	the	analog	data	pond

BUSINESS VALUE IN THE APPLICATION DATA POND

Finding business value from the application data pond is a different
proposition. Some typical examples of finding business value are
locating a particular receipt or the determination of the average cost
of shipments for 1999.
Suppose the organization is going through an audit and they are
looking for documentation from a previous year. The document is
needed to prove to an auditor an expense item. The operational
systems only go back three years, but the audit is for five years ago.
The organization looks to its application data pond to find the
receipt. In this case, there was a search across many documents in
the hope of finding just one. In another circumstance, management
thinks that shipment costs are rising too quickly. In order to get a
historical perspective on costs, management goes back to 1999 to
calculate shipment costs. They find those shipment costs in the
application data pond. In order to determine annual shipment costs,
a calculation must be done using many, many documents. Fig 12.3
shows the type of business value that can be derived from the
application data pond.





Fig	12.3	Types	of	business	value	derived	from	the	application	data	pond

BUSINESS VALUE IN THE TEXTUAL DATA POND

Yet a third type of business value can be derived from the textual
data pond. Suppose that a price has been agreed upon for an order.
However, the only documentation is in writing – in a paper letter. The
organization searches the entire textual data pond in order to find
one document.
Yet another kind of business value that can be derived from the
textual data pond is determining customer sentiment. Customer
sentiment is expressed in many ways – through tweets, through
emails, through other forms of narration.
The organization reads and stores these documents in their textual
data pond, which then passes these documents through textual
disambiguation and creates a database that can be analyzed, making
it easy to determine customer sentiment.
Customer sentiment is gauged by looking at many documents,
reading and disambiguating the contents of the documents, and
placing the results in a database, where analysis can be performed.
Knowing customer sentiment is an extremely valuable thing for the
business. Fig 12.4 depicts the business value that can be derived from
the textual data pond.



Fig	12.4	Types	of	business	value	derived	from	the	textual	data	pond



PERCENT OF RECORDS THAT HAVE BUSINESS VALUE

Another interesting way of looking at business value provided by the
different data ponds is through the percentage of records that have
business value.
Some data points have records that have a very high percentage of
business value. Other data have records with a very low percentage of
data value. Consider telephone calls.
In the US each day, there are millions of telephone calls made. If a
person were looking for telephone calls made by terrorists, it is safe
to say that there are only a handful of relevant points. In fact, on any
given day there may be no telephone calls made by terrorists. When
you look at the percentage of terrorist telephone calls made each day
versus the total number of calls, the percentage is very low. Perhaps
the percentage is as low as .0000001%. And the same very low
percentages of records holding business value hold true for such
things as log tapes, click stream records, and lots of other data.
Now consider other types of data, like textual data. Textual data is
gathered from places like call center conversations, customer
feedback, and so forth. Each phone call represents a customer’s
concerns or message. The content of each phone call has real
business value.
For most of textual data, 100% of the data has business value.
Admittedly, some phone conversations have more value than others.
But every telephone conversation has some business value.
There is then a stark difference between the percentage of records
that have business value in the data ponds. Fig 12.5 depicts these
value differences.





Fig	12.5	Understanding	the	value	of	data	in	the	various	types	of	data	ponds



IN SUMMARY

There are two types of business value found in the data ponds. Most
data value is found in a very small number of records, though high
value data is often found in vast vistas of low value data.
In general, repetitive data has a very low percentage of records that
contain business value, whereas non-repetitive records have a very
high percentage of records that have business value.



Chapter 13 
Additional Topics

Documentation is included in any computerized system.
Documentation is especially important for the data lake/data pond
environment. Without documentation, the analyst trying to use the
data lake/data pond environment will not be successful.
Documentation is absolutely essential for success in the data
lake/data pond environment.

HIGH SYSTEM LEVEL DOCUMENTATION

There are at least two levels of documentation which are necessary
for the data lake/data pond environment. One crucial point is the
high system level. At the high system level there is documentation
about:

How data enters the data lake and/or data pond
How data flows from one data pond to the next
How data flows into the archival data pond environment.

The high system level documentation for the data pond then shows
the business analyst the general flow of data within the data
lake/data pond environment.

DETAILED DATA POND LEVEL DOCUMENTATION

The second level of necessary documentation is documentation at the
detailed data pond level. The type of documentation that is needed
here covers:

Metadata of the data found in the data pond
Metaprocess information about the activities taking place in the



data pond
Transformation documentation
An architectural description of the flow of data within the data
pond
The criteria for selection for entry into the data pond
The criteria for exit out of the data pond.

Once the business analyst finds the general place where his/her data
is, they then need to have detailed information about how to access
and manipulate data accurately. The low level of documentation
provides this detailed information.

WHAT DATA FLOWS INTO THE DATA LAKE/DATA POND?
In Fig 13.1, there is the familiar corporate information factory, where
the application/operational systems, the data warehouse and data
marts, and other structures of data are found. But there is a host of
other data in the corporation that is not found in the corporate
information factory. There is also external data. There is analog data.
There is security data. There is textual data, and so forth.



Fig	13.1	Expanding	the	corporate	information	factory



Fig 13.2 shows that the two sources of data feed the data lake/data
pond environment.





Fig	13.2	Focusing	in	on	the	data	relationships

WHERE DOES ANALYSIS OCCUR?
Looking at the diagram seen in Fig 13.2, it’s now an interesting
question to ask: where do different kinds of analysis occur? The
organization conducts all sorts of analysis. Some is online in real
time. Some of the analysis is for corporate historical data. Some
analysis is KPI analysis or textual information.
So it is instructive to ask, what kind of analysis occurs where? Fig 13.3
shows that online, real time analysis takes place in the applications.
Activities such as bank transactions, airline reservations,
manufacturing control activities, shipment recording and so forth
occur here. The activity is online and real time, occurring in a matter
of seconds. Typically, only a very small amount of data is accessed
though. Updates and insert processing usually occur here.





Fig	13.3	Analyzing	online	real	time

The corporate analytical location is the data warehouse, as seen in Fig
13.4. Data from different applications is integrated into the data
warehouse. Typically, 3 to 5 years’ worth of history is stored here. The
analytical processing that occurs is performed in ranges from 5
minutes to 24 hours. In order to get the data into the data warehouse,
it passes through ETL (extract/transform/load) processing. As data
passes from the application environment to the data warehouse
through extract/transform/load processing, the data is then
transformed from an application state to a corporate state.



Fig	13.4	Sourcing	data	for	analysis	from	the	data	warehouse

Surrounding the data warehouse are data marts. Data marts are
where KPI analysis occurs, typically on a departmental basis.
Marketing, sales, finance and so forth all have their own KPI’s. Fig



13.5 depicts the data mart processing and analysis found in the
corporate information factory.

Fig	13.5	Sourcing	data	for	analysis	from	the	corporate	information	factory

Various and sundry other processing and analysis occurs outside the
corporate information factory. Most often, the processing is very
detailed and immediate. There are the reading of meters, the control
of manufacturing devices, and the electronic eye reading of vehicles
passing a control point. Fig 13.6 shows the kind of processing and
analysis that occurs outside the corporate information factory.



Fig	13.6	Processing	and	analyzing	data	outside	the	corporate	information	factory

And finally, there is the analytical processing that occurs in the data
lake/data pond environment. The most common forms of analytical
processing on the data found in the data lake/data pond environment



are pattern discovery and deep historical analysis.
In the textual data pond, sentiment analysis occurs as well. Fig 13.7
shows the analytical processing that occurs in the data lake/data
pond environment.
There are then many different kinds of analytical activities occurring
across the information landscape of the corporation. Analysis in one
place is usually quite different than the analysis elsewhere.



Fig	13.7	Analyzing	data	by	applying	various	processing	techniques

THE AGE OF DATA

Another interesting question is, what is the age of data in the data
lake/data pond environment? The answer is that data of any age can
be found in the data lake/data pond environment.
Normally, data that is very fresh – seconds old – is found in the
operational environment. Data that is from one year to five years old
is found in the data warehouse/data mart environment. And data
that is of any age is found in the data lake/data pond environment.
The data lake is the original long-term carrier of data.
On occasion, information is kept simply because it is cheaper to store
the data than it is to ever have to recreate the data again. The theory
is that if the data was important enough to be captured electronically
in the first place, then the data is important enough to never have to
be recreated again. There may be no foreseeable need for the data
but the data is kept in any case.



Another reason to keep data for lengthy periods of time are statutory
requirements. Some data must be kept forever because of legal
mandate. Storing that data in the data lake/data pond environment is
a good thing to do.

SECURITY OF DATA

Data in the data lake/data pond environment needs security, just like
the other parts of the data processing environment. However, the
security criticality of the data lake/data pond environment is
somewhat less than the security criticality of the other parts of the
data processing environment. That is because of the timeliness of the
data. Data in the data lake/data pond environment is likely to be
much older than the data found elsewhere in the data processing
environment.

IN SUMMARY

Documentation is an important part of the data lake/data pond
environment. There are two levels of documentation required. There
is high-level system documentation and there is low-level
documentation.
Data flows into the data lake/data pond from two basic places – the
corporate information factory and other data.
Different kinds of analysis occur in different locations. Online
analysis takes place in the online operational systems. Corporate
data analysis occurs in the data warehouse. KPI analysis occurs in the
data mart. Limited immediate analysis is conducted in the
miscellaneous data found elsewhere.
The data lake/data pond supports different kinds of analysis.
The age of data kept in the data lake/data pond environment is very
lengthy.
The data lake/data pond environment requires security, but not the



stringent level of security that is found elsewhere in the data
processing environment.



Chapter 14 
Analytical and Integration Tools

There are a variety of tools that support the data lake/data pond
environment. Each provides a different functionality that is needed
in the data lake/data pond environment. Some of the most prominent
tools will be mentioned here.

VISUALIZATION

Visualization is the technology that takes data (usually in a relational
format), organizes and displays the data. By turning details in a
database into a visualization, the organization can immediately see
patterns and trends that would not otherwise be obvious.
Visualization is especially useful to non-technical management.
In many cases, management cannot understand what is being said
unless the data is visualized.
Visualization technology can organize data in a variety of forms.
Visualization can create Pareto charts, pie charts and scatter charts,
among other forms of visualization.
In order to be effective, the data going into a visualization needs to
be organized into a database format first. Most visualization
technology requires that the data it operates on be stored in a
relational database format. Fig 14.1 shows some visualizations.



Fig	14.1	Visualizing	data	that	is	sourced	from	a	relational	database

SEARCH AND QUALIFY

Another useful and sophisticated technology is search and qualify
technology. Some search technology is quite simple, whereas others
are very sophisticated. Search and qualify technology can do
sophisticated searches where data may be less than optimally
organized, such as against textual data.



One of the sophisticated forms of search technology is the machine
learning and concept search technology. In the machine learning and
concept search technology, textual documents can be read and
qualified. The qualification of the documents is done in an extremely
sophisticated manner.
Suppose that a company had an account code named “rawhide.”
Search and qualify technology makes the term rawhide stand out
because when mentioned, there never are terms that are normally
associated with leather found near rawhide. There is no mention of
saddles, or ropes or Mexican riatas or any of the terms you might
expect to be associated with real rawhide. Instead, rawhide is a term
that means something unique. Fig 14.2 shows search and qualify
technology.



Fig	14.2	Searching	and	qualifying	technology

TEXTUAL DISAMBIGUATION

A most useful technology in the textual data pond is the technology
known as textual disambiguation. In textual disambiguation
technology, raw textual narration is read and converted to a standard
database format. In addition, the context of the text is identified and
written along with the text. Textual disambiguation is complex
technology. It deals with language and language is inherently
complicated. For those organizations doing serious textual analysis,
textual disambiguation is an absolute necessity. Fig 14.3 shows the
role of textual disambiguation.



Fig	14.3	Applying	textual	disambiguation



STATISTICAL ANALYSIS

Statistical analysis is another technology that is quite useful for
reading masses of data and doing sophisticated statistical analysis of
the data.
Statistical analysis entails not only the calculation of analytical
numbers, but the graphical display of those numbers in a
meaningful manner. Fig 14.4 depicts statistical analysis.



Fig	14.4	Applying	statistical	analysis



CLASSICAL ETL PROCESSING

Classical ETL is useful for reading and integrating application data,
and therefore the transformation process. Classical ETL processing
reads application-based data and turns it into corporate data that has
been integrated. Fig 14.5 shows classical ETL technology.

Fig	14.5	Understanding	ETL	technology

IN SUMMARY

There are several technologies which are helpful for building and



supporting the data lake/data pond environment. Some of these
technologies are:

Visualization
Search and qualify
Textual disambiguation
Statistical analysis
Classical ETL



Chapter 15 
Archiving Data Ponds

An essential part of the data lake/data pond architecture is the
archival data pond. The archival data pond is fed from data from the
analog data pond, the application data pond and the textual data
pond. Fig 15.1 shows the archival data pond.



Fig	15.1	Understanding	the	archival	data	pond

The archival data pond is used to hold data whose probable useful
life has diminished. The purpose of this pond is:

To have a place to store data that might have some future use
To allow useless data to be removed from data ponds so that
analysis in those data ponds can proceed in an efficient manner.

CRITERIA FOR REMOVAL

There are several criteria for the removal of data from the analog,
application and textual data ponds. Some critical ones are:

The aging of data.
The lowering of the probability of usage.
The need to store data because of litigated activity.
The need to store data because of the criticality regardless of
the probability of access.

STRUCTURAL ALTERATION

As data is being restructured from the data ponds to the archival
data pond, a structural change to the data occurs. Data in the archival
data pond has both metadata and metaprocess information attached
directly to the raw data. This attachment ensures that when future
analysts go looking through the archival data, then that metadata and
metaprocess information is not lost. Fig 15.2 shows the restructuring
that occurs as data is moved into the archival data pond.





Fig	15.2	Restructuring	as	data	is	moved	into	the	archival	data	pond

Once data is placed in the archival data pond, it is often useful to
index the data independently so that future analysts will be able to
find data efficiently.

CREATING INDEPENDENT INDEXES FOR ARCHIVAL DATA

Fig 15.3 shows the indexing of data in the archival data pond.



Fig	15.3	Indexing	of	data	in	the	archival	data	pond

IN SUMMARY

The archival data pond receives data from the other data ponds when
the data in those ponds has a very low probability of usage. Data in
the data archival pond is held in the pond indefinitely. Data is
restructured as it enters the archival data pond in order to have
metadata and metaprocess information placed physically adjacent to



the actual data itself. On occasion, separate and independent indexes
of data are created and stored in the data archival pond.



Glossary
4GL – fourth generation language – a computer language optimized
for ease of use
Acronym resolution – the process of expanding acronyms into their
literal meaning
Alternate spelling – a different way of forming a word pattern
Alternate storage – storage other than disk based storage used to
hold bulk amounts of data
Analog – a type of computing driven by sensory perceptions and
signals, as opposed to a digital computer
Analog data pond – the data pond where analog data is placed and
processed
Application – a computerized system dedicated to solving or
empowering a specific business function
Application data pond – the subset of the architected integrated data
lake where application data is stored and processed
Archival database – a collection of data containing information of a
historical nature
Archival processing – the activities surrounding older and/or inactive
data
Archival data pool – a component of the architected integrated data
lake environment where data is passed when the probability of
access is close to zero
Big Data – the storage of massive amounts of data in inexpensive
storage
Business process – a synonym for value chain, the term used to



differentiate a value chain of activities from a functional process or
functional set of activities
Business rule – a statement expressing a policy, guideline or
condition that governs business activities and or business decisions
CIF – corporate information factory – the data warehouse centric
architecture that contains operational sources of data, ETL, an ODS
and data marts
Conditioning – the transformation process that data in the data
ponds pass through
Constraint – the business rule that places a restriction on business
actions and/or decisions
Contextualization – the process of identifying the context of a word
Database – a structured collection of units of data organized around
some topic or theme
Data lake – the place Big Data is stored
Data pond – a subdivision of the architected integrated data lake
Data scientist – an individual dedicated to the study of patterns
found in data
DBMS – database management system – system software that
manages the storage and access of data on disk storage
Document – a basic unit of textual data
Great divide – the division of Big Data between repetitive data and
non-repetitive data
Hadoop – technology designed to house Big Data – a framework for
managing data
Homograph – a word or phrase whose interpretation depends on the
person who originally wrote the word or phrase
Homographic resolution – the process of contextualizing data based
on the identity of the person who uttered the text
Inline contextualization – the technique of inferring context by



establishing a beginning delimiter and an ending delimiter
Log tape – A sequential record of the activities that have occurred
inside a system. Sometimes called a “journal” tape. The primary
purpose of a log tape is for backup and recovery of a system.
Logical data model – a data model based on inferred relationships
Metadata – the classic definition of metadata as “data about the
data.”
Non-repetitive data – data whose records have no predictable pattern
of structure or content. Typical non-repetitive records include email,
call center data, warranty claim data, insurance claim data, and so
forth
Parsing – the process of reading text and finding contextualized value
that resides in the text
Pattern analysis – the analysis that seeks to find recognizable
patterns in the occurrence of points of data
Proximity analysis – an analysis based on the closeness of words or
taxonomies to each other
Statistical analysis – the process of looking at a large number of
values and evaluating the values mathematically
Stop word – a word in a language that is needed for communication
but not needed to convey information. In English there are stop
words such as “a,” “and,” “the,” “to,” “from” and so forth
Structured data – data that is managed by a database management
system
Taxonomy – a classification of text
Textual data pond – the subset of the architected integrated data lake
where textual data is stored and processed
Textual disambiguation – the process of reading text and formatting
text into a standard database format
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